双目机器视觉及RetinaNet模型的路侧行人感知定位

来源 :中国图象图形学报 | 被引量 : 0次 | 上传用户:tkartist
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目的 行人感知是自动驾驶中必不可少的一项内容,是行车安全的保障.传统激光雷达和单目视觉组合的行人感知模式,设备硬件成本高且多源数据匹配易导致误差产生.对此,本文结合双目机器视觉技术与深度学习图像识别技术,实现对公共路权环境下路侧行人的自动感知与精准定位.方法 利用双目道路智能感知系统采集道路前景图像构建4种交通环境下的行人识别模型训练库;采用RetinaNet深度学习模型进行目标行人自动识别;通过半全局块匹配(semi-global block matching,SGBM)算法实现行人道路前景图像对的视差值计算;通过计算得出的视差图分别统计U-V方向的视差值,提出结合行人识别模型和U-V视差的测距算法,实现目标行人的坐标定位.结果 实验统计2.5 km连续测试路段的行人识别结果,对比人工统计结果,本文算法的召回率为96.27%.与YOLOv3(you only look once)和Tiny-YOLOv3方法在4种交通路况下进行比较,平均F值为96.42%,比YOLOv3和Tiny-YOLOv3分别提高0.9%和3.03%;同时,实验利用标定块在室内分别拍摄3 m、4 m和5 m不同距离的20对双目图像,验证测距算法,计算标准偏差皆小于0.01.结论 本文提出的结合RetinaNet目标识别模型与改进U-V视差算法能够实现对道路行人的检测,可以为自动驾驶的安全保障提供技术支持,具有一定的应用价值.
其他文献
机器的情感是通过融入具有情感能力的智能体实现的,虽然目前在人机交互领域已经有大量研究成果,但有关智能体情感计算方面的研究尚处起步阶段,深入开展这项研究对推动人机交互领域的发展具有重要的科学和应用价值.本文通过检索Scopus数据库选择有代表性的文献,重点关注情感在智能体和用户之间的双向流动,分别从智能体对用户的情绪感知和对用户情绪调节的角度开展分析总结.首先梳理了用户情绪的识别方法,即通过用户的表情、语音、姿态、生理信号和文本信息等多通道信息分析用户的情绪状态,归纳了情绪识别中的一些机器学习方法.其次从用