论文部分内容阅读
设p为素数,n为任意的正整数,我们定义p的原数函数为最小的正整数m,使得pn|m!即就是SP(n)=min{m∶pn|m!},其中p为素数.本文研究了这一类Smarandache数论函数p次幂原数函数Sp(n)的均值性质,并给出关于|Sp(k(n+1))-Sp(kn)|和|Sp(k(n+1))-Sp(kn)|2的渐近公式.