论文部分内容阅读
摘要:随着城市建设中高层、超高层建筑的大量涌现,深基坑工程越来越多,基坑工程问题已经成为我国建筑工程界的热点问题之一。本文针对高层建筑基坑工程支护技术的应用问题进行了探讨。
关键词:高层建筑;基坑工程;支护技术;应用
中图分类号:TU94+2 文献标识码:A 文章编号:1009-914X(2013)30-0143-01
1土木工程施工中的基坑支护类型
1.1自立式支护。自立式支护通常用在地质条件相对较好的施工场地,这种支护方式基坑内没有支撑,有利于机械化挖土與地下工程的施工,但是其支护桩顶的水平位移比较大,如果基坑较深或者地质条件较差,那么工程造价将是相当高的。
1.2排桩内支撑支护。排桩一般都是冲或钻孔灌注桩,也有的工程用的是地下的连续墙或者是预应力管桩。根据平面的形状的不同,内支撑系统的布置方式也有所不同,譬如水平拱圈式支撑系统、角撑对称式支撑系统等。
1.3桩锚支护。桩锚支护方式主要用于土层性较好的施工场地。对于一些基坑深度较大的建筑工程,岩土锚杆要有固定的参数,比如轴向抗抜力不能大于等于600kN,采用二次高压注浆等。
1.4喷锚支护。喷锚支护是一种联合支护型式,它将钢丝网、喷射混凝土和锚杆结合在一起。这样的支护方式主要用于人工填土和粘性土的施工场地,切不可用在含水丰富的细沙层和卵石层。基坑深度要小于12米。
2.基坑工程支护技术的特点
2.1基坑工程是与众多因素相关的综合技术,如场地勘察,基坑设计、施工、监测,现场管理,相邻场地施工的相互影响等。
2.2建筑趋向高层化,基坑工程正向大深度、大面积方向发展,有的长度和宽度多达百余米,给支撑系统带来较大的难度。
2.3随着旧城改造的推进,基坑工程经常在已建或在建的、密集的或紧靠重要市政设施的建筑群中施工,场地狭窄,邻近常有必须保护的永久性建筑和市政公用设施,不能放坡开挖,对基坑稳定和位移控制的要求很严。相邻场地的基坑施工,其打桩、降水、挖土等各施工环节都会产生相互影响与制约,增加协调工作的难度。
2.4工程地质条件越来越差,城市建设不像水电站、核电站等重要设施那样,可以在广阔地域中选择优越的建设场地,只能根据城市规划需要。在较土、高水位及其他复杂条件下开挖基坑,很容易产生土体滑移、基坑失稳、桩体变位、坑底隆起、支挡结构严重漏水、流土以致破损等病害,对周围边建筑物、地下构筑物及管线的安全造成很大威胁。
2.5基坑工程施工周期长,从开挖到完成地面以下的全部隐蔽工程,常需经历多次降雨、周边堆载、振动等,对基坑稳定性不利。
3高层建筑基坑工程支护技术应用
3.1钢板桩支护
钢板桩由带钳口或锁口的热轧型钢制成,钢板桩墙就是将这种钢板桩互相连接起来,钢板桩墙在挡水和挡土中被广泛应用。目前,直腹板型、Z型和U型是钢板桩常用的截面形式。由于施工工艺比较简单,钢板桩被广泛应用。由于钢板桩的施工会产生噪声振动,影响施工场地周围的环境,还可能使临近地基产生变形,所以在人口密度大、建筑物较多的地方会限制其使用。另外,钢板桩具有较大的柔性,如果锚拉或支撑系统没有设置恰当,就会有较大的变形产生,因此在深度大于7m的基坑支护中,不适宜采用。在地下室施工完成后,要将钢板桩拔出来,所以在使用钢板桩支护时,要将拔出过程对附近地表土和地基土的影响考虑进去。
3.2地下连续墙支护
对地下水位以下的砂土和软粘土等多种地层条件和复杂的施工环境,特别是基坑底面以下有深层软土需要将墙体插入很深的情况下,地下连续墙比较适用,这是由于其具有良好的止水防渗能力,整体刚度比较大,因此地下连续墙支护在国内外的地下工程中被广泛使用。在深度大于10m的基坑而且要求附近环境得到很好保护的工程中,在比较经济、技术后,大多采用这种技术。但是在坚硬土体中将地下连续墙开挖成槽是有很大难度的,特别是碰到岩层时,需要有专门的成槽工具,这就加大了施工费用。在施工中泥浆污染施工现场,场地很容易被破坏,使得道路脏乱。现在采用的逆作法施工能将两墙合一,也就是在施工中用作围护结构,而且还作为地下结构的外墙。
3.3土钉墙支护
土钉墙支护,是用于开挖土体和稳定边坡的一种新的挡土技术,由于其可靠、经济、施工简便快速,在我国已经得到了快速推广和应用。土钉是用于对现场原位土体的进行加固的细长杆件,一般使用钻孔,放入变形钢筋并以沿孔全长注浆的方法制成,通过对其与土体之间的摩擦力或粘结力的依靠,在土体发生变形时对拉力被动进行承受。其支护体系由喷射混凝土面层、被加固的土体、密集的土钉群组成。土体强度由于其随挖随支的工艺特点得到了有效维持,还能减少土体的扰动。为了有一定时间进行土钉墙的施工,使用土钉支护要求土体具有临时的自我稳定能力,所以要限制土钉墙适用的地质条件。为了适应以淤泥及淤泥质土为主的软土带的地质条件特性,复合土钉墙支护技术也就是加筋泥土墙在沿海地区发展起来。在水泥土桩中将H型钢(钢管、拉森板桩等)插入组成了加筋水泥土墙。加筋水泥土墙具有良好的止水抗渗和挡土效果,这是由于H型钢能够承受侧向荷载,而水泥土具有很好的抗渗性能。H型钢和水泥土桩的组成形式通常有两种,而且将H型钢插到水泥土桩中,方便了设置支撑。
3.4拱圈支护
拱圈分闭合拱和非闭合拱,椭拱、圆拱和二次曲线拱是拱圈的几种形式。拱圈挡土能承受水平方向的土压力,由于受压是拱内力的主要形式,具有很小的弯矩,混凝土抗压强度高的特性能被充分发挥出来,施工方便,缩短了工期。但是施工现场要适合布置拱圈,要符合圆环受力的构造特点,高度重视拱脚的稳定性,并采取一定的保护措施。
3.5深层搅拌支护
深层搅拌支护就是以水泥为固化剂,通过机械搅拌,强制将软土剂和固化剂拌合,这样有一系列的物理化学反应会在软土剂和固化剂之间产生,然后逐渐硬化,具有稳定性、整体性和一定强度的水泥土挡墙就会形成。作为支护结构,其适用于粉土、粘土、淤泥、素填土、粉质粘土、淤泥质土等土层,基坑开挖深度不要比6m大。通过试验确定泥炭质土、有机质土的开挖深度。
3.6排桩支护
排桩支护是挡土结构以柱列式间隔布置钢筋混凝土钻孔、挖孔灌注桩作为主的一种支护形式。桩与桩相切的密排布置形式和桩与桩之间具有一定净距的疏排布置形式柱列式间隔布置形式都属于柱列式间隔布置形式。作为挡土围护结构,柱列式灌注桩的刚度很好,但是需要依靠桩顶浇注较大截面的钢筋混凝土帽梁来联系各桩。通过桩背或桩间的高压注浆,设置旋喷桩、搅拌桩,或专门在桩后构筑防水帷幕等措施,夹带土体颗粒的地下水从桩间孔隙流入或者渗入坑内。灌注桩能用人工挖孔或机械钻孔,不需要大型机械,施工比较简单,而且没有打入桩的震动、噪音和挤压周围土体带来的危害,与地下连续墙相比成本较低。
结语
随着城市高层建筑的发展,基坑工程项目会越来越多,基坑周围环境复杂,地面建筑云集,地下设施众多,甚至地质条件多变,基坑支护技术的难度越来越高。因此,根据需要研究新的基坑支护技术是非常有必要的,基坑支护技术急需进一步改善,进而促进建筑业的发展。
参考文献:
[1] 陈华阳.浅谈土木工程施工的基坑支护技术及控制[J].城市建设理论研究(电子版).2011.
[2] 陈井龙.论土木工程施工中的基坑支护技术[J].中华民居.2011.
关键词:高层建筑;基坑工程;支护技术;应用
中图分类号:TU94+2 文献标识码:A 文章编号:1009-914X(2013)30-0143-01
1土木工程施工中的基坑支护类型
1.1自立式支护。自立式支护通常用在地质条件相对较好的施工场地,这种支护方式基坑内没有支撑,有利于机械化挖土與地下工程的施工,但是其支护桩顶的水平位移比较大,如果基坑较深或者地质条件较差,那么工程造价将是相当高的。
1.2排桩内支撑支护。排桩一般都是冲或钻孔灌注桩,也有的工程用的是地下的连续墙或者是预应力管桩。根据平面的形状的不同,内支撑系统的布置方式也有所不同,譬如水平拱圈式支撑系统、角撑对称式支撑系统等。
1.3桩锚支护。桩锚支护方式主要用于土层性较好的施工场地。对于一些基坑深度较大的建筑工程,岩土锚杆要有固定的参数,比如轴向抗抜力不能大于等于600kN,采用二次高压注浆等。
1.4喷锚支护。喷锚支护是一种联合支护型式,它将钢丝网、喷射混凝土和锚杆结合在一起。这样的支护方式主要用于人工填土和粘性土的施工场地,切不可用在含水丰富的细沙层和卵石层。基坑深度要小于12米。
2.基坑工程支护技术的特点
2.1基坑工程是与众多因素相关的综合技术,如场地勘察,基坑设计、施工、监测,现场管理,相邻场地施工的相互影响等。
2.2建筑趋向高层化,基坑工程正向大深度、大面积方向发展,有的长度和宽度多达百余米,给支撑系统带来较大的难度。
2.3随着旧城改造的推进,基坑工程经常在已建或在建的、密集的或紧靠重要市政设施的建筑群中施工,场地狭窄,邻近常有必须保护的永久性建筑和市政公用设施,不能放坡开挖,对基坑稳定和位移控制的要求很严。相邻场地的基坑施工,其打桩、降水、挖土等各施工环节都会产生相互影响与制约,增加协调工作的难度。
2.4工程地质条件越来越差,城市建设不像水电站、核电站等重要设施那样,可以在广阔地域中选择优越的建设场地,只能根据城市规划需要。在较土、高水位及其他复杂条件下开挖基坑,很容易产生土体滑移、基坑失稳、桩体变位、坑底隆起、支挡结构严重漏水、流土以致破损等病害,对周围边建筑物、地下构筑物及管线的安全造成很大威胁。
2.5基坑工程施工周期长,从开挖到完成地面以下的全部隐蔽工程,常需经历多次降雨、周边堆载、振动等,对基坑稳定性不利。
3高层建筑基坑工程支护技术应用
3.1钢板桩支护
钢板桩由带钳口或锁口的热轧型钢制成,钢板桩墙就是将这种钢板桩互相连接起来,钢板桩墙在挡水和挡土中被广泛应用。目前,直腹板型、Z型和U型是钢板桩常用的截面形式。由于施工工艺比较简单,钢板桩被广泛应用。由于钢板桩的施工会产生噪声振动,影响施工场地周围的环境,还可能使临近地基产生变形,所以在人口密度大、建筑物较多的地方会限制其使用。另外,钢板桩具有较大的柔性,如果锚拉或支撑系统没有设置恰当,就会有较大的变形产生,因此在深度大于7m的基坑支护中,不适宜采用。在地下室施工完成后,要将钢板桩拔出来,所以在使用钢板桩支护时,要将拔出过程对附近地表土和地基土的影响考虑进去。
3.2地下连续墙支护
对地下水位以下的砂土和软粘土等多种地层条件和复杂的施工环境,特别是基坑底面以下有深层软土需要将墙体插入很深的情况下,地下连续墙比较适用,这是由于其具有良好的止水防渗能力,整体刚度比较大,因此地下连续墙支护在国内外的地下工程中被广泛使用。在深度大于10m的基坑而且要求附近环境得到很好保护的工程中,在比较经济、技术后,大多采用这种技术。但是在坚硬土体中将地下连续墙开挖成槽是有很大难度的,特别是碰到岩层时,需要有专门的成槽工具,这就加大了施工费用。在施工中泥浆污染施工现场,场地很容易被破坏,使得道路脏乱。现在采用的逆作法施工能将两墙合一,也就是在施工中用作围护结构,而且还作为地下结构的外墙。
3.3土钉墙支护
土钉墙支护,是用于开挖土体和稳定边坡的一种新的挡土技术,由于其可靠、经济、施工简便快速,在我国已经得到了快速推广和应用。土钉是用于对现场原位土体的进行加固的细长杆件,一般使用钻孔,放入变形钢筋并以沿孔全长注浆的方法制成,通过对其与土体之间的摩擦力或粘结力的依靠,在土体发生变形时对拉力被动进行承受。其支护体系由喷射混凝土面层、被加固的土体、密集的土钉群组成。土体强度由于其随挖随支的工艺特点得到了有效维持,还能减少土体的扰动。为了有一定时间进行土钉墙的施工,使用土钉支护要求土体具有临时的自我稳定能力,所以要限制土钉墙适用的地质条件。为了适应以淤泥及淤泥质土为主的软土带的地质条件特性,复合土钉墙支护技术也就是加筋泥土墙在沿海地区发展起来。在水泥土桩中将H型钢(钢管、拉森板桩等)插入组成了加筋水泥土墙。加筋水泥土墙具有良好的止水抗渗和挡土效果,这是由于H型钢能够承受侧向荷载,而水泥土具有很好的抗渗性能。H型钢和水泥土桩的组成形式通常有两种,而且将H型钢插到水泥土桩中,方便了设置支撑。
3.4拱圈支护
拱圈分闭合拱和非闭合拱,椭拱、圆拱和二次曲线拱是拱圈的几种形式。拱圈挡土能承受水平方向的土压力,由于受压是拱内力的主要形式,具有很小的弯矩,混凝土抗压强度高的特性能被充分发挥出来,施工方便,缩短了工期。但是施工现场要适合布置拱圈,要符合圆环受力的构造特点,高度重视拱脚的稳定性,并采取一定的保护措施。
3.5深层搅拌支护
深层搅拌支护就是以水泥为固化剂,通过机械搅拌,强制将软土剂和固化剂拌合,这样有一系列的物理化学反应会在软土剂和固化剂之间产生,然后逐渐硬化,具有稳定性、整体性和一定强度的水泥土挡墙就会形成。作为支护结构,其适用于粉土、粘土、淤泥、素填土、粉质粘土、淤泥质土等土层,基坑开挖深度不要比6m大。通过试验确定泥炭质土、有机质土的开挖深度。
3.6排桩支护
排桩支护是挡土结构以柱列式间隔布置钢筋混凝土钻孔、挖孔灌注桩作为主的一种支护形式。桩与桩相切的密排布置形式和桩与桩之间具有一定净距的疏排布置形式柱列式间隔布置形式都属于柱列式间隔布置形式。作为挡土围护结构,柱列式灌注桩的刚度很好,但是需要依靠桩顶浇注较大截面的钢筋混凝土帽梁来联系各桩。通过桩背或桩间的高压注浆,设置旋喷桩、搅拌桩,或专门在桩后构筑防水帷幕等措施,夹带土体颗粒的地下水从桩间孔隙流入或者渗入坑内。灌注桩能用人工挖孔或机械钻孔,不需要大型机械,施工比较简单,而且没有打入桩的震动、噪音和挤压周围土体带来的危害,与地下连续墙相比成本较低。
结语
随着城市高层建筑的发展,基坑工程项目会越来越多,基坑周围环境复杂,地面建筑云集,地下设施众多,甚至地质条件多变,基坑支护技术的难度越来越高。因此,根据需要研究新的基坑支护技术是非常有必要的,基坑支护技术急需进一步改善,进而促进建筑业的发展。
参考文献:
[1] 陈华阳.浅谈土木工程施工的基坑支护技术及控制[J].城市建设理论研究(电子版).2011.
[2] 陈井龙.论土木工程施工中的基坑支护技术[J].中华民居.2011.