论文部分内容阅读
目的为进一步提高遥感影像的分类精度,将卷积神经网络(CNN)与条件随机场(CRF)两个模型结合,提出一种新的分类方法。方法首先采用CNN对遥感图像进行预分类,并将其类成员概率定义为CRF模型的一阶势函数;然后利用高斯核函数的线性组合定义CRF模型的二阶势函数,用全连接的邻域结构代替常见的4邻域或8邻域;接着加入区域约束,使用Mean-shift分割方法得到超像素,通过计算超像素的后验概率均值修正各像素的分类结果,鼓励连通区域结果的一致性;最后采用平均场近似算法实现整个模型的推断。结果选用3组高分辨率