论文部分内容阅读
多标签学习中一个样本可同时属于多个类别标签,每个标签都可能拥有反映该标签特定特点的特征,即类属属性,目前已经出现了基于类属属性的多标签分类算法LIFT。针对LIFT算法中未考虑标签之间相互关系的问题,提出一种基于标签相关性的类属属性多标签分类算法CLLIFT。该算法使用标签距离度量标签之间的相关性,通过在类属属性空间附加相关标签的方式完成标签相关性的引入,以达到提升分类性能的目的。在四个多标签数据集上的实验结果表明,所提算法与LIFT算法相比在多个多标签评价指标上平均提升21.1%。