论文部分内容阅读
文章提出了基于支持向量机的短时用水量预测模型,对城市用水量本身固有的非线性、复杂性和不确定性进行综合考虑。结合实例数据,对基于支持向量机的预测模型和基于BP神经网络的预测模型进行比较。结果表明,基于支持向量机的预测模型在精度、收敛时间、泛化能力、最优性等方面均优于基于BP神经网络的预测模型。