论文部分内容阅读
摘要:经典线性回归模型的一个重要假设就是回归方程的随机扰动项,具有相同的方差,也称同方差性。但在大多数经济现象中,这种假设不一定成立,有时扰动项的方差随观察值的不同而变化,这就是异方差性。在经济研究中,异方差性的存在使得回归模型失效。本文以SPSS为分析工具,来研究回归模型中异方差性检验和消除。
关键词:异方差性 SPSS分析工具 异方差检验和消除一、引言
回归分析是处理随机变量之间的相关关系的一种统计方法。即研究一个被解释变量与一个或多个解释变量之间的统计关系。
异方差性会导致严重的后果,所以对异方差性的检验无疑是非常重要的。对异方差检验的方法有很多,如残差图分析法、等级相关系数法、格莱斯尔检验等等,本文采用残差图和等级相关系数法进行异方差性检验。
二、检验方法
(一)散点图检验法
1、散点图检验法以残差e为纵坐标,以自变量为横坐标画散点图。其中残差e是指观测值与预测值之间的差,即实际观察值与回归估计值的差。但需要指出的是,散点图检验法只能粗略、简单地判断异方差的存在与否,要想准确判断异方差是否存在,必须通过下面即将介绍到的等级相关系数法。
2、判定
当回归模型满足所有假定时,残差图上的几个点的散布应是随机的,无任何规律。此时随机误差项为齐性;如果回归模型存在异方差,残差图上的点的散布呈现出相应的趋势,e值会随自变量值增大而增大或减小,有明显的规律,这时可以认为模型的随机误差项为非齐性。
(二)等级相关系数检验法
Y关于X的回归方程为:
等级相关系数:r|e|·x=1-6∑ni=1d2in(n2-1),其中,n为样本容量,di为对应于xi和|ei|的等级的差数。对总体的等级相关系数ρ|e|·x进行假设检验:
1、假设:H0:ρ|e|·x=0H1:ρ|e|·x≠0
当n>8时,构造t检测模型。
2、构造检验统计量:
t=re·xn-21-r2e·x~t(n-2)
3、给定显著性水平α
4、确定临界值:tα/2(n-2)
5、判定:
三、异方差消除方法
(一)加权最小二乘法
以一元线性回归方程为例,yi=β0+β1xi+εi(1)
如已知εi的方差与解释变量的某种函数成比例 ,即:Var(εi)=σ2εi=f(xi)σ2,其中,σ2是一个有限常数,若f(xi)=1时,εi具有同方差Var(εi)=σ2,若f(xi)≠1,则σ2=Var(εi)f(xi),其中f(xi)为大于0且不等于的值。对于上述模型,若满足E(εi)=0,Var(εi)=σ2εi,则该回归方程存在异方差。现用1f(xi)分别乘以该回归方程,得到:
需要指出的是,加权最小二乘法可以减少一部分异方差的影响,有时候不能完全消除异方差,要和其他方法结合使用。
(二)方差稳定化变换
常见到方差稳定化变换有如下几种:
(1)如果σ2i与E(Yi)存在一定的比例关系,使用y′=y
(2)如果σi与E(yi)存在一定的比例关系,使用y′=logy
(3)如果σi与E(yi)存在一定的比例关系,使用y′=1y
如选用了某种变换,得到y′,就可用OLSE(最小二乘估计)建立y′x与x的回归方程。
参考文献:
[1]宋廷山,李杰.回归模型的异方差性消除方法探讨[J].统计教育,2007.4.
[2]《经济学中的统计方法》,王学仁,科学出版社,2000年
[3]《METLAB6刀与科学计算》,王沫然, 电子工业出版社,2001年
关键词:异方差性 SPSS分析工具 异方差检验和消除一、引言
回归分析是处理随机变量之间的相关关系的一种统计方法。即研究一个被解释变量与一个或多个解释变量之间的统计关系。
异方差性会导致严重的后果,所以对异方差性的检验无疑是非常重要的。对异方差检验的方法有很多,如残差图分析法、等级相关系数法、格莱斯尔检验等等,本文采用残差图和等级相关系数法进行异方差性检验。
二、检验方法
(一)散点图检验法
1、散点图检验法以残差e为纵坐标,以自变量为横坐标画散点图。其中残差e是指观测值与预测值之间的差,即实际观察值与回归估计值的差。但需要指出的是,散点图检验法只能粗略、简单地判断异方差的存在与否,要想准确判断异方差是否存在,必须通过下面即将介绍到的等级相关系数法。
2、判定
当回归模型满足所有假定时,残差图上的几个点的散布应是随机的,无任何规律。此时随机误差项为齐性;如果回归模型存在异方差,残差图上的点的散布呈现出相应的趋势,e值会随自变量值增大而增大或减小,有明显的规律,这时可以认为模型的随机误差项为非齐性。
(二)等级相关系数检验法
Y关于X的回归方程为:
等级相关系数:r|e|·x=1-6∑ni=1d2in(n2-1),其中,n为样本容量,di为对应于xi和|ei|的等级的差数。对总体的等级相关系数ρ|e|·x进行假设检验:
1、假设:H0:ρ|e|·x=0H1:ρ|e|·x≠0
当n>8时,构造t检测模型。
2、构造检验统计量:
t=re·xn-21-r2e·x~t(n-2)
3、给定显著性水平α
4、确定临界值:tα/2(n-2)
5、判定:
三、异方差消除方法
(一)加权最小二乘法
以一元线性回归方程为例,yi=β0+β1xi+εi(1)
如已知εi的方差与解释变量的某种函数成比例 ,即:Var(εi)=σ2εi=f(xi)σ2,其中,σ2是一个有限常数,若f(xi)=1时,εi具有同方差Var(εi)=σ2,若f(xi)≠1,则σ2=Var(εi)f(xi),其中f(xi)为大于0且不等于的值。对于上述模型,若满足E(εi)=0,Var(εi)=σ2εi,则该回归方程存在异方差。现用1f(xi)分别乘以该回归方程,得到:
需要指出的是,加权最小二乘法可以减少一部分异方差的影响,有时候不能完全消除异方差,要和其他方法结合使用。
(二)方差稳定化变换
常见到方差稳定化变换有如下几种:
(1)如果σ2i与E(Yi)存在一定的比例关系,使用y′=y
(2)如果σi与E(yi)存在一定的比例关系,使用y′=logy
(3)如果σi与E(yi)存在一定的比例关系,使用y′=1y
如选用了某种变换,得到y′,就可用OLSE(最小二乘估计)建立y′x与x的回归方程。
参考文献:
[1]宋廷山,李杰.回归模型的异方差性消除方法探讨[J].统计教育,2007.4.
[2]《经济学中的统计方法》,王学仁,科学出版社,2000年
[3]《METLAB6刀与科学计算》,王沫然, 电子工业出版社,2001年