论文部分内容阅读
针对不同工况下滚动轴承寿命状态识别时训练样本与测试样本分布差异导致寿命状态无法有效识别的问题,提出基于源域多样本集成(Geodesic Flow Kernel,GFK)的滚动轴承寿命状态识别方法。首先,采用无重复均匀随机抽样对源域类间样本进行多次等量随机抽样得到源域内部多个训练样本以充分挖掘源域样本信息;其次,将源域内部多个训练样本和目标域测试样本输入GFK,分别计算每个源域训练样本与目标域测试样本的测地线核矩阵以充分利用源域样本信息并提升GFK迁移学习能力;最后,利用核矩阵构造核分类器并输出分类结果,采