论文部分内容阅读
面对城市生活垃圾(MSW)的热值(HVs)难以实时测量的现状,构建基于减法聚类的自适应模糊神经网络(ANFIS)的入炉垃圾热值软测量模型.针对循环流化床(CFB)生活垃圾焚烧炉的工艺特点,选择模型的输入变量;依据专家经验对样本的热值进行模糊分类;利用减法聚类(SC)算法对训练样本进行分析,自适应地确定初始模糊规则和模糊神经网络的初始结构参数;结合最小二乘估计法和误差反向传播算法对模糊神经网络的参数进行学习,构建自适应神经模糊推理系统,完成CFB生活垃圾焚烧锅炉入炉垃圾热值的软测量建模.对比研究BP神经网络、RBF神经网络和支持向量机模型在垃圾热值预测方面的表现,结果表明:基于减法聚类的模糊神经网络模型具有最高的预测精度.预测值和实际垃圾热值的比较结果证明:模糊神经网络模型能够表征垃圾热值的整体变化趋势,可以对循环流化床垃圾焚烧锅炉的运行、控制和管理起到指导作用,并且能够为循环流化床生活垃圾焚烧锅炉的燃烧自动控制(ACC)系统提供可靠的热值反馈信号.