论文部分内容阅读
针对传统点特征匹配方法计算量大、匹配速度慢的问题,给出了一种基于CenSurE-star和LDB的图像匹配算法,以用于在视觉检测中对被测目标图像进行快速匹配;该算法首先通过调整滤波器尺寸从而快速检测被测目标图像中不同尺度的CenSurE-star特征点,然后采用LDB方法对特征点结合其邻域进行描述,以描述符汉明距离为标准衡量图像特征点间的相似度并进行对应筛选,最终结合RANSAC剔除剩余的误匹配点对,实现了图像间准确匹配;实验研究表明,在关于光照、噪声和模糊变化的三组被测目标图像匹配中相较SIFT、