Robust signal recognition algorithm based on machine learning in heterogeneous networks

来源 :Journal of Systems Engineering and Electronics | 被引量 : 0次 | 上传用户:xinshouji1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR) circumstances or under time-varying multipath channels, the majority of the existing algorithms for signal recognition are already facing limitations. In this series, we present a robust signal recognition method based upon the original and latest updated version of the extreme learning machine(ELM) to help users to switch between networks. The ELM utilizes signal characteristics to distinguish systems. The superiority of this algorithm lies in the random choices of hidden nodes and in the fact that it determines the output weights analytically, which result in lower complexity. Theoretically, the algorithm tends to offer a good generalization performance at an extremely fast speed of learning. Moreover, we implement the GSM/WCDMA/LTE models in the Matlab environment by using the Simulink tools. The simulations reveal that the signals can be recognized successfully to achieve a 95% accuracy in a low SNR(0 d B) environment in the time-varying multipath Rayleigh fading channel. There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio (SNR) cases or under time-varying multipath channels, the majority of the present algorithms for signal recognition are already facing limitations. In this series, we present a robust signal recognition method based upon the original and latest updated version of the extreme learning machine (ELM) to help users to switch between networks. characteristics to distinguish systems. The superiority of this algorithm lies in the random choices of hidden nodes and in the fact that it determines the output weights analytically, which result in lower complexity. Theoretically, the algorithm tends to offer a good generalization performance at an extremely fast speed of learning. Moreover, we implement the GSM / WCDMA / LTE models in the Matlab environment by usi The simulations reveal that the signals can be recognized successfully to achieve a 95% accuracy in a low SNR (0 d B) environment in the time-varying multipath Rayleigh fading channel.
其他文献
This paper investigates the ordering policy for the newsvendor problem with customer balking and penalties for balking and stockout.Our analysis is based on the
中国的历史观念起源很早,但是到了19世纪末20世纪初,中国社会正处于三千年未有之变局的大变革和大转折年代。面对这样一种变革,面对着近代中西方对撞中,中国“完败”的局面,中国人
一是智力符合常态。心理健康的儿童智力是正常的,多数孩子的智商(IQ)在85 ̄115分。他们能够适应一定的学习生活,与周围环境取得平衡。天才儿童的记忆力极强,对事物观察细致,想
《幼儿园教育指导纲要》指出:培养幼儿诚实、自信、友爱、好问、勇敢、不怕困难、讲礼貌、守纪律等优良品德、文明行为和可爱的性格。因此,笔者所在幼儿园以打造“好孩子·好习惯”为特色背景,将礼仪教育作为突破口,探索了幼儿礼仪教育的目标、内容、途径和方法,通过让幼儿亲身感知,亲身实践,逐步培养了幼儿良好的道德素养,促进了幼儿全面和谐平衡发展。下面是笔者结合班级日常工作,谈谈礼仪教育教学实践中的一些做法。  
儿童节不过了,青年节又不够格,15岁的孩子似乎是处在社会关注的盲区。北京教育科学研究院家庭教育专家闵乐夫根据调查结果撰写的调研报告《让我们聚焦15岁》,文中指出:危险一
学校里,音乐课普遍安排在上午最后一节、下午第一节或最后一节课。这个时段,学生旺盛的精力有所消退,兴趣也随之下降,是学习的低效阶段。再由于音乐课没有升学考试的压力,学校和学生本就不太重视,常常出现课堂纪律松散,学生注意力不集中等现象。所以,为了让课堂更丰富、精彩,教师往往设计一些学生喜欢的音乐游戏、占用过多时间进行舞蹈表演、毫无意义的学科间拓展练习,这些花架子给学生展示了一节又一节音乐课堂的“乌托邦
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
以往研究提示,c-mvc和c-erbB-2癌基因在鼻咽癌中过表达.为了阐明这两种癌基因过表达的分子机制,应用当前肿瘤研究新技术--组织微阵列,结合间期双色荧光原位杂交(FISH)和免疫
期刊
伟大的波兰天文学家尼古拉·哥白尼用日心说推翻了长达2000多年的人类传统宇宙观,至此,人们对宇宙的认识进入了一个日新月异的新境界。然而,这种日新月异还有一个“框”:宇宙是唯