基于分类特征约束变分伪样本生成器的类增量学习

来源 :控制与决策 | 被引量 : 0次 | 上传用户:tcf274617008
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对神经网络模型进行类增量训练时产生的灾难性遗忘问题,提出一种基于分类特征约束变分伪样本生成器的类增量学习方法.首先,通过构造伪样本生成器记忆旧类样本来训练新的分类器及新的伪样本生成器.伪样本生成器以变分自编码器为基础,用分类特征进行约束,使生成的样本更好地保留旧类在分类器上的性能.然后,用旧分类器的输出作为伪样本的精馏标签,进一步保留从旧类获得的知识.最后,为了平衡旧类样本的生成数量,采用基于分类器分数的伪样本选择,在保持每个旧类伪样本数量平衡的前提下选择一些更具代表性的旧类伪样本.在MNIST、FASHION、E-MNIST和SVHN数据集上的实验结果表明,所提出的方法能有效减少灾难性遗忘的影响,提高图像的分类精度.
其他文献
当今社会环境问题日益严重,能源成本日益提高,峰值能耗在生产制造中备受关注.针对带峰值能耗约束的流水线调度问题,即生产过程中各时间节点机器总功耗不得超过给定阈值,以最
针对基本状态转移算法在某些复杂高维函数寻优后期表现出收敛慢、精度低的问题,引入局部搜索拟牛顿算子,构造一种混合状态转移算法,以弥补状态转移算法后期搜索效率低和拟牛
遥感变化检测对于监督和管理土地资源利用具有重要作用.针对监督变化检测需要人为干预训练样本的劣势、不平衡数据问题以及基于像素变化检测中的"椒盐"现象,提出基于协同聚类和权重注意力稀疏自编码网络的变化检测方法.方法采用模糊c均值和K-means对差异图协同聚类得到训练和待分类数据,同时在样本中考虑灰度共生矩阵特征,并利用合成少数过采样方法扩充变化样本以解决样本不平衡问题.通过逐层权重注意力模块加强网络
回转窑作为水泥窑炉煅烧过程的核心热工设备,其正常运转率与产品产量、质量及能耗紧密相关,由于回转窑内部核心反应区温度高且装置持续旋转,接触式温度传感器无法安装在窑内核心反应区域,而筒扫系统借助红外扫描装置能够实时监测回转窑筒体表面温度并间接反映窑内热工状况.签于此,提出一种新的基于筒扫图像2D-OTSU边缘检测的回转窑异常工况识别方法.该方法首先构建基于灰度梯度和局部灰度标准差信息的融合模型,并利用
针对启发优化算法在WSN节点定位问题中定位精度不高和收敛速度较慢的缺陷,提出基于反向学习的群居蜘蛛优化WSN节点定位算法.为减少前期随机搜索,所提出算法首先通过Bounding-
选址-路径问题是供应链管理和物流系统规划中的一个重要问题,对总成本具有十分重要的影响.对考虑配送中心容积约束的带时间窗的选址-路径问题进行研究,建立以总成本最小和客
针对自然场景中文字符检测率低、小字符检测困难以及字符检测类别多样等问题,提出一种基于YOLOv2的改进方法,并将其应用于自然场景中文字符检测中.首先利用k-means++聚类算法对字符目标候选框(anchor)的数量和宽高比维度进行聚类分析,提出多层特征融合策略,对原网络中第4个最大池化层前所输出的特征图经过3×3和1×1大小的卷积核进行卷积操作,并执行4倍的下采样得到局部特征;然后对第5个最大池
研究了基于分布式通信网络的多无人机时变编队控制问题,考虑到外界扰动对多无人机协同编队系统的影响,提出一种新的连续非线性鲁棒编队控制方法.首先基于一致性方法构造了分布式无人机编队误差系统,降低了编队控制器对全局编队信息的要求;然后采用一种基于误差符号函数积分的鲁棒控制算法补偿未知外界扰动的影响,提高了无人机编队系统的鲁棒性,并基于Lyapunov分析的方法,证明了多无人机编队误差的半全局渐进收敛性;
针对简易棚仓隔热性和密闭性差的特点,应用膜下内环流控温技术,控制大豆粮堆表层平均粮温在20℃以下,整仓平均粮温在15℃以下,控制虫害的繁殖发展,减少储粮化学药剂的使用,达
针对有人/无人机编队飞行过程中的队形保持问题,采用领航-跟随策略设计一种有人/无人机编队队形保持控制器.首先从编队作战体系和控制原理角度设计有人/无人机编队控制系统结构;然后基于领航有人机与跟随无人机平面位姿的几何关系,建立编队内相对距离-角度运动学模型;最后在考虑僚机控制系统时变扰动的情况下,针对编队运动学模型特点设计动态反馈自适应编队队形保持控制器,并利用李雅普诺夫理论证明编队控制器的稳定性.