论文部分内容阅读
"监控+鞋印"是目前公安机关刑事侦查的重要技战法,其基本原理是依据犯罪现场鞋印推断嫌疑人所穿鞋型,然后到周边监控视频中检索嫌疑鞋型。针对"监控+鞋印"技战法自动化程度低下的问题,提出一种基于卷积神经网络的鞋型识别方法,实现对嫌疑鞋型的自动识别。根据鞋型识别独有特点,在DeepID的基础上设计卷积神经网络框架,并构建鞋型样本数据库(50双鞋型样本,共计160231幅图像)。运用Caffe框架结合不同网络模型对鞋型图像数据进行训练和测试,实验设计的初始网络结构由两层卷积、两层池化、两层全连接组成。实验比