论文部分内容阅读
研究网络安全问题,针对网络受到非法用户入侵,破坏系统的正常工作,传统网络初始权值凭经验确定,易出现初始权值确定不当,导致网络入侵检测准确率低的难题。为了提高网络入侵检测的准确率,提出一种遗传神经网络的网络入侵检测方法。方法把神经网络和遗传算法结合起来,把网络初始权值作为遗传算法的一个种群,把网络检测准确率作为遗传算法的目标函数,通过遗传算法种群的"优胜劣汰"机制搜索到神经网络算法的全局最优初始权值,采用最优权值对网络入侵数据进行检测,得到最优网络入侵检测结果。结果证明,方法学习速度快、检测准确率高、