论文部分内容阅读
为提高Leap Motion设备的采集精准度,解决自遮挡、采样频率不稳定等设备固有问题,首先,设计了使用Leap Motion和动作捕捉设备的手部多模态同步运动采集方案,采集了日常动作数据集;其次,提出了基于卷积神经网络(convolutional neural network, CNN)的Leap Motion手部运动数据优化方法,使用日常动作数据集训练Leap Motion数据到动作捕捉数据的映射网络;最后,提出手指平面约束,确保网络输出数据保持稳定的手部骨骼结构.通过15名志愿者采集了6类动作