论文部分内容阅读
针对视频中由于丢帧或遮挡造成的不完整目标轨迹,利用异步隐马尔可夫模型(AHMM)进行多目标数据关联.通过在HSV颜色空间采用背景差分法获取视频中多目标位置,并从中提取目标位置及方向角特征作为观测值以提高关联算法对于目标位移扰动的鲁棒性.将多目标的数据关联问题转化为轨迹的识别分配问题,通过异步隐马尔可夫模型的新增时间标示和时变转移矩阵,提高了对不完整轨迹的建模和数据关联的准确性.实验结果表明,当视频跟踪过程中发生数据丢失时,相对于经典的联合数据关联算法和隐马尔可夫算法,所提出的多目标数据关联算法具有较低的关联错误率.