论文部分内容阅读
针对传统人工提取方法自动化程度低、过分依赖人工设计的特征,以及现有的深度学习方法中存在的提取精度不高等问题,提出了一种基于改进型U-Net网络的高分辨率遥感影像建筑物提取方法。首先将空洞卷积加入到网络中,利用不同尺度的空洞卷积对来自网络编码部分的结果进行多尺度特征提取;再对提取的特征进行特征融合,并输入到网络的下一层;然后将制作的数据集输入到网络中进行训练;最后利用Softmax得到最终分割结果。在建筑物公开的数据集中进行测试,提取结果的像素精度为96.26%;Iou精度为78.59%、Recall