论文部分内容阅读
实例是本体的重要组成部分,它在很大程度上决定了本体的可用性。而目前本体实例构建的难度甚至超过了本体构建本身,大多实例的获取、更新和扩充依靠人工完成,既花费大量时间,又难以保证质量。文章在已完成的水稻本体概念框架基础上,利用神经网络方法进行半自动水稻实例抽取,提出水稻本体实例构建框架。统计数据表明,该方法能够有效地提高本体实例构建效率,大幅度降低手工劳动水平,提高本体实例质量,为本体实例构建和本体走向实际应用提供了思路和方法。