论文部分内容阅读
由于平面地图呈现方式单一且有限,为提升其多样性需准确分割平面地图中的道路区域。提出一种基于改进CNN(convolutional neural network)平面地图道路和模糊推理分割的方法。选取两个道路信息丰富的数据库,实验选取百度地图(Baidu)数据库和高德地图(Amap)数据库,标记得到含标签信息的像素训练集;用Sigmoid分割目标函数代替复杂的Softmax函数分别训练得到Baidu-CNN模型和Amap-CNN模型;对得到的像素点概率进行非线性映射,构建模糊推理系统;将非线性映射后均