论文部分内容阅读
作为在时间序列数据挖掘中广泛使用的主要符号化表示方法,符号聚合近似(SAX)使用段的平均值作为符号表示,由于无法区分具有不同趋势但具有相同平均值符号的不同时间序列,某些情况下可能会导致错误的分类.提出了一种改进的符号表示——趋势符号聚合近似(TrSAX),集成SAX与最小二乘法,用以描述时间序列的均值和斜率,并由此构建出BOTS分类器.此外,对卫星的模拟量遥测时序数据中的角度序列、转速序列、电流序列进行分析,并从UCR公开数据集中筛选出与3种序列类似的3个数据集进行分类实验验证.与应用了SAX和2个改进的SAX、经典的欧氏距离(ED)、动态时间规整(DTW)的1-NN分类方法进行对比,结果表明:提出的BOTS分类方法的分类错误率明显低于其他5种分类方法.