矩阵方程组的最小二乘解及其最佳逼近的迭代算法

来源 :纺织高校基础科学学报 | 被引量 : 0次 | 上传用户:halfmile
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
建立了求矩阵方程组AiXBi=Ci(i=1,2)的最小二乘解的迭代算法.不考虑舍入误差时,对任意给定的初始矩阵,该算法能够在有限步迭代计算后得到矩阵方程组的最小二乘解,给定特殊的初始矩阵时可得到极小范数最小二乘解.另外,在上述解集合中也可给出指定矩阵的最佳逼近矩阵.
其他文献
广西平乐县城区防洪堤设计方案选取,在结合生态环境保护,以及社会经济效益的比选后,推荐采用环保材料生态网格石笼作为防洪堤临水挡墙的设计方案。
利用万能试验机对45^#钢/尼龙夹层板进行了准静态压缩实验,得到了关于不同厚度比(面板总厚度与芯材厚度的比值)的45^#钢/尼龙夹层板的应力-应变曲线,实验结果表明在准静态压缩
水利高职教育顶岗实习是教学过程的重要环节。通过分析顶岗实习环节的安全风险,提出了高职教育顶岗实习环节的安全风险管理对策,明确指出高职院校除了应重视安全教育外,还应
利用Gronwall不等式和Ito公式,对终端为无穷时间的倒向双重随机微分方程,证明了一维情形下的方程解的比较定理.
(A)n∈N+,设n=n=p1^a1P2^a1…pk^ak为n的标准素因数分解式,如果对于m=p1^β1P2^β2 …pr^βr有βi|αi (I=1,2,...,k),则称m为n的e-因子.令de(n)表示n的所有e-因子的个数.研究了k-ful