基于贝叶斯后验概率和非合作博弈的推荐算法

来源 :计算机应用与软件 | 被引量 : 0次 | 上传用户:nanshixujie
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对传统协同过滤推荐算法推荐精度较低等问题,提出一种基于贝叶斯后验概率预测和非合作博弈的个性化推荐算法.采用文件主题模型求取用户与其参加过的所有社交活动的主题分布,利用隐含主题概率分布表征用户兴趣度,根据信任传递机制求取用户的直接信任和间接信任,形成用户间的信任度;将用户的兴趣度和信任度等隐式特征赋予合理的先验分布,利用贝叶斯后验概率预测隐式特征后的显式反馈;依据显式反馈将推荐结果转化为非合作博弈中用户效益最大化的纳什均衡求解.仿真对比实验表明,与其他三种推荐算法相比该算法的查准率至少提高了3.13%,查全率至少提高了2.62%.
其他文献
针对网格多边形机器人online探索问题,在分析现有成果的基础上,结合SmartDFS算法,并通过扩大机器人视觉范围,使其范围限定在给定的单位网格内.通过区分不同类型的网格,确定遍历的优先级别以设计出不同的探索策略,提出SmartDFS-OPT算法.该算法将网格多边形online探索问题求解算法的竞争比从5/4降低为7/6,达到了理论分析结果的下界,使机器人的online遍历路径长度达到最短,因而是求解该问题的一个最优算法.该算法将有助于那些基于机器人探索未知环境的智能设备的研发与应用.
推荐算法在一定程度上解决了信息过载问题,但传统推荐模型在挖掘数据特性方面有待改进.为此,结合强化学习方法提出一种融合序列模式评分的策略梯度推荐算法.将推荐过程建模为马尔可夫决策过程;分析推荐基础数据特性模式,设计以序列模式评分为奖励的反馈函数,在算法的每一次迭代过程中学习;通过对累积奖励设计标准化操作来降低策略梯度的方差.将该方法应用到电影推荐中进行验证,结果表明所提方法具有较好的推荐准确性.
Stack Overflow是一个计算机编程领域的问答社区,其中的文本蕴含大量有价值的信息可供挖掘,但由于其本身存在大量的错误词汇,给文本的分析造成影响.对此,提出一种词语自动检测纠错算法,通过词向量的技术以语义相似度为核心,对错误词汇进行分析,结合改进的编辑距离算法对文本进行自动检测纠错.实验结果表明,该算法能够对诸如此类专业性较强的领域主题文本进行自动检测纠错,并且能够较好地还原标准文段用词.
针对现有图像增强算法中存在过度增强和欠增强、边缘光晕效应、由于细节增强导致信噪比降低等问题,提出一种基于多级直方图形状分割的图像对比度增强技术.利用引导图像过滤器将图像背景和细节分离,避免边缘过度增强带来的光晕效应;利用多级直方图形状分割方法,将直方图中出现频率相近的强度值区域分割出来,实现图像背景的个体均衡化;采用自适应细节增强方法在增强细节的同时抑制均匀区域中噪声,保持图像的信噪比.实验结果表明,与其他算法相比,该增强方法的效果更优,能够有效避免图像增强中常见的不利问题,同时产生足够的整体增强效果.
聚类是将物理或抽象对象的集合分成由类似的对象组成的多个类(簇)的过程.同一个簇中的对象彼此相似,而不同簇中的对象差异较大.以基因表达式编程算法为基础,结合新设计的广义聚类代数算子和目标优化函数,提出一种基于基因表达式编程的多目标自动聚类算法(MAGEP-Cluster).该算法不仅可以自动确定最优聚类的数目,还可以同时基于簇内数据紧凑性和簇间数据连通性两个指标实现数据的有效划分.在三个人工数据集和五个UCI数据集上的实验结果表明,与GEP-Cluster、MOCK和VAMOSA等算法相比,MAGEP-Cl
根据图上节点所在位置与邻居节点特征,可以使用不同策略为每个图上节点进行区间编码,基于区间编码,许多在大型图上的应用如知识图谱查询、智能问答等的处理可以加速或得到准确性上的提升.针对此种情况,提出一种基于树分解算法的图上点区间编码方法,并在大型知识图谱上通过智能问答歧义消除的应用验证该方法的有效性.实验结果表明,该方法能够有效地表达出图上节点的位置特征,并帮助智能问答中的实体消除歧义.
为了提高动态网络链路预测准确率,从网络结构微观演化角度,提出基于模体演化的多因子动态链路预测方法(MFME).在动态网络时间窗口划分优化的基础上,引入整合移动平均自回归模型构建预测模体演化的概率矩阵,综合考虑模体演化影响因子及模体演化概率,可获得任意节点间的连接边概率.在真实数据集的实验表明,所提方法能达到更好的链路预测效果.
传统数据降维算法分为线性或流形学习降维算法,但在实际应用中很难确定需要哪一类算法.设计一种综合的数据降维算法,以保证它的线性降维效果下限为主成分分析方法且在流形学习降维方面能揭示流形的数据结构.通过对高维数据构造马尔可夫转移矩阵,使越相似的节点转移概率越大,从而发现高维数据降维到低维流形的映射关系.实验结果表明,在人造数据以及真实数据的线性降维中,该算法降维效果与主成分分析算法相当而局部线性嵌入失败;在流形学习降维中,该算法与局部线性嵌入基本相当而主成分分析算法完全失败.
压缩感知利用信号的稀疏性通过求解欠定线性系统的解来有效地重建信号,其稀疏性要求信号在某个域中是稀疏的.压缩感知理论认为一般情况下,信号的相关性越小,恢复算法的性能越好.求解压缩感知问题的方法有贪婪追踪、凸松弛方法、迭代收缩等算法,以及贝叶斯框架、置信传播等.从欠定线性矩阵方程角度讨论压缩感知问题,通过两种不同量测矩阵(谱库)的具体数值实验,重点研究了OMP、LARS和StOMP三个稀疏恢复算法在混合光谱解析时的性能和存在的问题,并给出相应的优化建议.