论文部分内容阅读
生物医学图像分析可以辅助医生诊断疾病,然而,图像中常含有噪声以及灰度不均匀现象,使得传统的图像分割方法不能得到满意的结果。针对这些问题,构造一种基于图像区域信息的偏移场恢复耦合模型,使得模型可以在分割的同时恢复出图像偏移场。为了得到全局最优解并提高算法效率,将该模型改进成1范数下的凸函数,并使用基于Split-Bregman方法对该耦合模型进行快速求解。实验结果表明,本文方法可以降低噪声和灰度不均匀的影响,得到较准确的分割结果和偏移场信息,而且大大地降低了计算复杂度。