论文部分内容阅读
乌申斯基说:“比较是一切理解和思维的基础,我们正是通过比较来了解世界上的一切的。”在小学数学中有很多概念:数的概念、运算的概念、量与计量的概念、几何形体的概念、比和比例的概念、方程的概念,以及统计初步知识的有关概念等。这些概念是构成小学数学基础知识的重要内容,它们是互相联系着的。只有明确牢固地掌握数的概念,才能理解运算概念,而运算概念的掌握,又能促进数的整除性概念的形成。所以掌握数学概念是构建数学认知结构的重要基础,同时,也是发展学生智力和培养学生数学能力的前提。
一、学生概念的获得与偏差
学生概念获得实质上就是掌握同类事物的共同的本质特征。概念形成有两个条件:一是学生自身的内部条件,即学生必须辨别概念的正反例证;二是教师方面的外部条件,教师必须对学生所提出的概念的关键特征的假设作出肯定或否定的反应,也就是说要让学生从外界获得反馈信息。然而,在学生获得数学概念的过程中会受到很多因素影响,从而产生了概念获得的偏差。在教学中,发现学生在学习数学概念时容易出现的三种错误情况:
1.扩大内涵,缩小外延。这主要是因为他们把概念的一些无关特征当成了本质特征,在概念的内涵中不仅包括概念的本质特征,还包括了非本质特征,从而扩大了概念的内涵,缩小了概念的外延。
例如,有些学生认为合数必须是偶数,实际上,合数可能是偶数、也可能是奇数,数的奇偶性并不是合数的本质属性。
2.扩大外延,缩小内涵。当学生没有把概念的所有本质特征完全包含在概念的内涵中,或者,没有认识到本质特征,却把非本质特征当成了本质特征,就可能扩大概念的外延。
例如,教学《梯形的认识》,教学中老师会选择一些“非标准”的梯形让学生辨别,帮助学生排除标准图形所带来的干扰,避免出现误将“上底短,下底长,腰方向(腰相等)”等非本质特征当作本质特征的片面认识。
3.混淆概念。在学习中,学生常常会把一些相似的概念搞混淆。发生这些错误的根本原因在于没有能够清晰准确地抓住概念的本质属性、排除概念的无关特征。
例如:数位与位数、体积与容积,减少与减少到等等相对应概念,存在许多共同点与内在联系。
二、抓住概念的本质进行变式
“变式”是指本质属性不变而非本质属性发生变化。变式用以说明同一个概念的本质特征相同、非本质特征不同的一组实例。这些实例都是概念的正例,但是它们在概念的非本质特征方面有变化。
(一)图形变式
如教学“平行四边形面积”时,学生通过对平行四边形的割、拼、摆,推导出“平行四边形的底等于长方形的长”,“平行四边形的高等于长方形的宽”,通过转化推导出平行四边形的面积公式。在强化概念理解的环节中,课件出示一个平行四边形中不对应的一个高和一个底,并要求大家求出它的面积。
通过交流分析,学生明确:运用公式求平行四边形的面积必须知道相应的底和高。运用变式可以使学生透过现象看到本质,避免学生形成思维定势,从而真正掌握概念。
(二)符号变式
如教学“方程”时,在这个判断是不是方程中,学生必须对“未知数”、“等式”这几个概念十分清楚,才能形成这个判断,并以此来推断出下面的6道题目,哪些是方程。
(1) 56+23=79? (2) 23-x=67? (3) x÷5=4.5
(4) 44×2=88 (5) 75÷x=4? (6) 9+x=123
三、运用比较,揭示概念的本质
小学数学教学中,有许多既有联系又有区别、似同实异、容易混淆的问题。在教学中适时、恰当地运用比较法,引导学生加以区别,有助于突出教学重点、突破教学难点、防止知识混淆、提高辨别能力。
在数学概念教学中,发现运用比较可以帮助学生解决两个方面的学习困难:
(一)通过比较来帮助学生明确概念的内涵和外延。
例如,在前面的“合数”概念教学中,可以引导学生分别比较所举的每一组合数实例内部的相同点和不同点,在此基础上,比较三组实例之间的相同点和不同点,从而概括出“合数”的本质特征和非本质特征,明确概念的内涵和外延。
(二)通过比较来帮助学生明确有关概念间的关系。
学生产生概念混淆往往是由于不能区分概念之间的异同,不明确概念之间的联系。在对容易混淆的概念进行比较时,要抓住它们的本质区分点。
例如,“偶数”和“奇数”的本质区分点是能否被2整除;“锐角”和“钝角”的本质区分点是大于还是小于“直角”或“90度角”。
四、变式与比较相兼,融会贯通
在变式的运用中,还应该注意培养学生的比较能力。帮助学生通过比较找出事物的本质特征和非本质特征,并在此基础上加以概括,以奠定概念的基础。通过已知条件和问题的变化,进行变式和比较,让分散的知识点趋于系统化,掌握概念间的本质关系,揭示解题规律,帮助学生学会模型判断。
例如:在“长方体和正方体”教学中,因为教学内容较为抽象,逻辑思维性强,在实际生产、生活中用途广泛的一种基础知识,由于受各方面的制约和影响,在学习过程中,常常会出现一些共性错误。所以教师的主要任务是帮助学生建立棱长、表面积、体积的模型,能分辨实际问题中,需要求什么内容。
模型1:V=abh
变式一:已知一个长方体游泳池的长是15米,宽10米,深2米,在池底铺上一层碎石,已知碎石厚0.2米。 问游泳池实际能蓄水多少?(在运用体积模型中,找到模型相对应的高)
变式二:在一个棱长为24厘米的正方体鱼缸中放入一石块(石块完全侵入水中),水面上升了1.5厘米,这个石块的体积是多少立方厘米?(上升部分水的体积就是石头体积)
模型2:C=(a+b+h)×4
一个长方体长5厘米,宽3厘米,高2厘米,它的棱长和是多少?
变式一:用彩色丝带包扎一只长7分米,宽5分米,高2分米的纸箱(连接部分忽略),这根丝带最少长多少?
模型三:S=(ab+ah+bh)×2
长方体的长是12厘米,宽8厘米,高5厘米,它的表面积是多少?
变式一:一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,这张商标纸的面积是多少平方厘米?
变式二:把一个棱长2分米的正方体切成两个体积相等的长方体,其中一个长方体的表面积是多少平方分米?
学生通过对具体材料、问题的比较,不仅能够较好地理解数学知识,而且能够深化数学思维。小学生的比较能力是随着其年龄和知识的增长、智力水平的发展而逐步提高的。培养学生的比较能力,还要考虑不同年级学生的思维水平,结合具体材料由浅入深、由简单到复杂地提出比较的要求。
在小学数学教学中,教师应该充分考虑如何运用“变式”,帮助学生通过“变”与“不变”的比较,从“变”的现象中发现“不变”的本质,从“不变”的本质中探究“变”的规律,让所学的知识点融会贯通,加深对知识的理解;逐步清晰地认识和把握数学内容,分析数学问题,促使学生主动学习,学会学习;进而提高学生对数学概念的运用技能。
一、学生概念的获得与偏差
学生概念获得实质上就是掌握同类事物的共同的本质特征。概念形成有两个条件:一是学生自身的内部条件,即学生必须辨别概念的正反例证;二是教师方面的外部条件,教师必须对学生所提出的概念的关键特征的假设作出肯定或否定的反应,也就是说要让学生从外界获得反馈信息。然而,在学生获得数学概念的过程中会受到很多因素影响,从而产生了概念获得的偏差。在教学中,发现学生在学习数学概念时容易出现的三种错误情况:
1.扩大内涵,缩小外延。这主要是因为他们把概念的一些无关特征当成了本质特征,在概念的内涵中不仅包括概念的本质特征,还包括了非本质特征,从而扩大了概念的内涵,缩小了概念的外延。
例如,有些学生认为合数必须是偶数,实际上,合数可能是偶数、也可能是奇数,数的奇偶性并不是合数的本质属性。
2.扩大外延,缩小内涵。当学生没有把概念的所有本质特征完全包含在概念的内涵中,或者,没有认识到本质特征,却把非本质特征当成了本质特征,就可能扩大概念的外延。
例如,教学《梯形的认识》,教学中老师会选择一些“非标准”的梯形让学生辨别,帮助学生排除标准图形所带来的干扰,避免出现误将“上底短,下底长,腰方向(腰相等)”等非本质特征当作本质特征的片面认识。
3.混淆概念。在学习中,学生常常会把一些相似的概念搞混淆。发生这些错误的根本原因在于没有能够清晰准确地抓住概念的本质属性、排除概念的无关特征。
例如:数位与位数、体积与容积,减少与减少到等等相对应概念,存在许多共同点与内在联系。
二、抓住概念的本质进行变式
“变式”是指本质属性不变而非本质属性发生变化。变式用以说明同一个概念的本质特征相同、非本质特征不同的一组实例。这些实例都是概念的正例,但是它们在概念的非本质特征方面有变化。
(一)图形变式
如教学“平行四边形面积”时,学生通过对平行四边形的割、拼、摆,推导出“平行四边形的底等于长方形的长”,“平行四边形的高等于长方形的宽”,通过转化推导出平行四边形的面积公式。在强化概念理解的环节中,课件出示一个平行四边形中不对应的一个高和一个底,并要求大家求出它的面积。
通过交流分析,学生明确:运用公式求平行四边形的面积必须知道相应的底和高。运用变式可以使学生透过现象看到本质,避免学生形成思维定势,从而真正掌握概念。
(二)符号变式
如教学“方程”时,在这个判断是不是方程中,学生必须对“未知数”、“等式”这几个概念十分清楚,才能形成这个判断,并以此来推断出下面的6道题目,哪些是方程。
(1) 56+23=79? (2) 23-x=67? (3) x÷5=4.5
(4) 44×2=88 (5) 75÷x=4? (6) 9+x=123
三、运用比较,揭示概念的本质
小学数学教学中,有许多既有联系又有区别、似同实异、容易混淆的问题。在教学中适时、恰当地运用比较法,引导学生加以区别,有助于突出教学重点、突破教学难点、防止知识混淆、提高辨别能力。
在数学概念教学中,发现运用比较可以帮助学生解决两个方面的学习困难:
(一)通过比较来帮助学生明确概念的内涵和外延。
例如,在前面的“合数”概念教学中,可以引导学生分别比较所举的每一组合数实例内部的相同点和不同点,在此基础上,比较三组实例之间的相同点和不同点,从而概括出“合数”的本质特征和非本质特征,明确概念的内涵和外延。
(二)通过比较来帮助学生明确有关概念间的关系。
学生产生概念混淆往往是由于不能区分概念之间的异同,不明确概念之间的联系。在对容易混淆的概念进行比较时,要抓住它们的本质区分点。
例如,“偶数”和“奇数”的本质区分点是能否被2整除;“锐角”和“钝角”的本质区分点是大于还是小于“直角”或“90度角”。
四、变式与比较相兼,融会贯通
在变式的运用中,还应该注意培养学生的比较能力。帮助学生通过比较找出事物的本质特征和非本质特征,并在此基础上加以概括,以奠定概念的基础。通过已知条件和问题的变化,进行变式和比较,让分散的知识点趋于系统化,掌握概念间的本质关系,揭示解题规律,帮助学生学会模型判断。
例如:在“长方体和正方体”教学中,因为教学内容较为抽象,逻辑思维性强,在实际生产、生活中用途广泛的一种基础知识,由于受各方面的制约和影响,在学习过程中,常常会出现一些共性错误。所以教师的主要任务是帮助学生建立棱长、表面积、体积的模型,能分辨实际问题中,需要求什么内容。
模型1:V=abh
变式一:已知一个长方体游泳池的长是15米,宽10米,深2米,在池底铺上一层碎石,已知碎石厚0.2米。 问游泳池实际能蓄水多少?(在运用体积模型中,找到模型相对应的高)
变式二:在一个棱长为24厘米的正方体鱼缸中放入一石块(石块完全侵入水中),水面上升了1.5厘米,这个石块的体积是多少立方厘米?(上升部分水的体积就是石头体积)
模型2:C=(a+b+h)×4
一个长方体长5厘米,宽3厘米,高2厘米,它的棱长和是多少?
变式一:用彩色丝带包扎一只长7分米,宽5分米,高2分米的纸箱(连接部分忽略),这根丝带最少长多少?
模型三:S=(ab+ah+bh)×2
长方体的长是12厘米,宽8厘米,高5厘米,它的表面积是多少?
变式一:一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,这张商标纸的面积是多少平方厘米?
变式二:把一个棱长2分米的正方体切成两个体积相等的长方体,其中一个长方体的表面积是多少平方分米?
学生通过对具体材料、问题的比较,不仅能够较好地理解数学知识,而且能够深化数学思维。小学生的比较能力是随着其年龄和知识的增长、智力水平的发展而逐步提高的。培养学生的比较能力,还要考虑不同年级学生的思维水平,结合具体材料由浅入深、由简单到复杂地提出比较的要求。
在小学数学教学中,教师应该充分考虑如何运用“变式”,帮助学生通过“变”与“不变”的比较,从“变”的现象中发现“不变”的本质,从“不变”的本质中探究“变”的规律,让所学的知识点融会贯通,加深对知识的理解;逐步清晰地认识和把握数学内容,分析数学问题,促使学生主动学习,学会学习;进而提高学生对数学概念的运用技能。