论文部分内容阅读
欺骗信息检测是信息安全领域中的重要研究内容.现有的研究表明,三分之一的人际交往中会涉及到潜在的欺骗,大量的欺骗信息充斥在各种各样的通信媒介中,在海量的网络信息中欺骗性数据的规模通常远小于非欺骗性数据的规模,已有方法还不能很好地适应于准确高效地欺骗检测,迫切期望提出一种能高效地检测欺骗信息的方法.针对具有非平衡性的海量网络信息,提出了一种基于集成学习的欺骗行为检测方法.通过改进的二分k-means划分方法对训练样本集进行分解,分别在每对正负样本集上学习各自独立的分类器,然后利用每个独立分类器分别计算待测样本