利用边缘计算的多车协同激光雷达SLAM

来源 :中国图象图形学报 | 被引量 : 1次 | 上传用户:computer2900
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目的激光雷达实时定位与建图(simultaneous localization and mapping,SLAM)是智能机器人领域的重要组成部分,通过对周边环境的3维建模,可以实现无人驾驶车辆的自主定位和精准导航。针对目前单个车辆激光雷达建图周期长、算力需求大的现状,提出了基于边缘计算的多车协同建图方法,能够有效地负载均衡,在保证单个车辆精准定位的同时,增加多个车辆之间的地图重用性。方法构建基于阈值的卸载函数,论证边缘计算下的多车卸载决策属于势博弈问题,设计实现基于边缘计算的势博弈卸载算法,在模型具
其他文献
目的目标遮挡一直是限制跟踪算法精确度和稳定性的问题之一,针对该问题,提出一种抗遮挡的多层次重定位目标跟踪算法。方法通过平均峰值相关能量动态分配特征权重,将梯度特征与颜色直方图特征动态地结合起来进行目标跟踪。利用多峰值检测和峰值波动情况进行目标状态判定,若目标状态不理想,则停止模板更新,避免逐帧更新导致目标漂移,继续跟踪目标;若判定目标遮挡,则提取对应特征点,使用最邻近距离比进行特征匹配和筛选,丢弃
目的在无人驾驶系统技术中,控制车辆转向以跟踪特定路径是实现驾驶的关键技术之一,大量基于传统控制的方法可以准确跟踪路径,然而如何在跟踪过程中实现类人的转向行为仍是当前跟踪技术面临的挑战性问题之一。现有传统转向模型并没有参考人类驾驶行为,难以实现过程模拟。此外,现有大多数基于神经网络的转向控制模型仅仅以视频帧作为输入,鲁棒性和可解释性不足。基于此,本文提出了一个融合神经网络与传统控制器的转向模型:深度
目的在智能网联汽车系统开发中,复杂环境下的车道线检测是关键环节之一。目前的车道线检测算法大都基于颜色、灰度和边缘等视觉特征信息,检测准确度受环境影响较大。而车道线的长度、宽度及方向等特征的规律性较强,具有序列化和结构关联的特点,不易受到环境影响。为此,采用视觉信息与空间分布关系相结合的方案,来提高复杂环境下的车道线检测能力。方法首先针对鸟瞰图中车道线在横向和纵向上分布密度不同的特点,将目标检测算法
现有卷积神经网络(convolutional neural network,CNN)利用卷积层和激活函数的叠加,构建复杂非线性函数拟合输入数据到输出标签的转换关系,这种端到端的学习方式严重影响了CNN特征图与先验知识的融合,导致其对训练样本数量和质量敏感,同时增加了CNN特征图可解释性难度。本文从深度学习建模方式角度出发,以遥感图像特征表达及其可解释性为切入点,搭建传统遥感图像先验知识与CNN的桥