论文部分内容阅读
针对传统助学金评选方法中存在虚假申请材料难以鉴别、无法准确了解学生真实经济水平的问题。文中提出了基于分布式强化学习算法的精准助学数据分析方法,该方法通过收集数字化校园中学生的各项消费数据,经过数据预处理后找出具有分类能力的变量。然后,将RBF神经网络通过归一化与选取合适的隐藏层层数、神经元个数来提高聚类速度。由于数字化校园存在多个消费场景,使用Markov对策与Bayesian网络可以建立各个智能体之间的互相关系,从而增强各个智能体之间的交互性。由数据测试分析结果可知,文中所述方案识别贫困生的准确率可达8