论文部分内容阅读
为增强电动负载模拟器的自适应能力以抵抗系统的非线性、时变参数及运动扰动的影响,提出利用小脑模型神经网络(CMAC)与PID的并联进行控制与调节的控制方法。利用PID控制保证系统的初始稳定性,在小脑模型神经网络引入速度信号和误差信号构成二雏参考输入,使系统具有很好的自适应消扰能力,减小了多余力矩的影响。仿真证明了该方法的可行性和有效性,收到了很好的控制效果。