论文部分内容阅读
混合推荐是解决各种单一推荐方法缺陷的重要途径,文中提出基于图的混合推荐算法,通过在图中融合各种推荐因素进行建模,产生最终的推荐结果.利用推荐物品的内容属性计算物品间的相似度,构建最近邻图关联矩阵.根据物品的打分记录构建物品的兴趣模型,生成矢量函数.在此基础上,利用正则化框架组合关联矩阵和矢量函数,构建基于图的学习模型,实现基于图的混合推荐,并从理论上证明算法的收敛性.在Movie Lens数据集和亚马逊网上商城交易数据上的对比实验验证文中算法的有效性.