论文部分内容阅读
选用2012年11月1日-2013年1月31日的逐6 h的空气污染物(SO2、NO2、PM10)和实况气象要素(温度、湿度、能见度、风速和气压)资料,利用支持向量机和Elman神经网络方法建立空气污染物预报模型。结果表明,支持向量机和Elman神经网络方法都可以得到较为理想的预测结果,支持向量机在泛化能力方面具有显著优势,预测结果更加准确。