论文部分内容阅读
针对目前的曲线聚类算法基于类内差异设计,造成不同类之间的曲线区分度不高的问题。在曲线拟合、曲线距离界定的基础上,构造新的目标函数,提出同时考虑类内和类间差异的曲线聚类算法。模拟结果显示,该曲线聚类能够提高聚类精度;针对NO2污染物小时浓度的实例分析表明,该曲线聚类算法具有更好的类间区分度。