论文部分内容阅读
以层次划分和模块化为思想基础,提出了一种新型神经网络模型对自由曲面进行重构,即基于径向基函数(RBF)神经网络的混合网络模型。先后运用减聚类方法、正交最小二乘法、最大似然法对网络进行有无监督的混合训练,旨在解决大样本集的简化建模和快速训练问题,提高混合网络输出精度。实验结果表明该网络模型使得曲面的拟合精度有了明显提高。