论文部分内容阅读
Based on the plant regeneration system, a GUS gene transformation system to Idaho locust (Robinia pseudoacacia ’Idaho’) mediated by Agrobacterium tumefaciens was established. The successful transformation was confirmed by regenerating the shoots from the infected leaves in the presence of hygromysin; by histochemical X-gluc assays ofβ-glucuronidase (GUS) and by PCR and PCR-Southern blotting analysis. The ratio of positive transgenic plants is 5.8% (5 out of 86 plants). With this system, the target gene DREB was introduced into the leaves of Idaho locust. The transgenic plants regenerated, which was verified by PCR-Southern blotting. It is suggested that the transformation system could be a new, simple, reliable and practical route to gene transformation of R. pseudoacacia ’Idaho’ mediated with A. tumefaciens.
Based on the plant regeneration system, a GUS gene transformation system to Idaho locust (Robinia pseudoacacia ’Idaho’) mediated by Agrobacterium tumefaciens was established. The successful transformation was confirmed by regenerating the shoots from the infected leaves in the presence of hygromysin; by histochemical X-gluc assays of β-glucuronidase (GUS) and by PCR and PCR-Southern blotting analysis. The ratio of positive transgenic plants is 5.8% (5 out of 86 plants). With this system, the target gene DREB was introduced into the leaves of Idaho locust. The transgenic plants regenerated, which was verified by PCR-Southern blotting. It is suggested that the transformation system could be a new, simple, reliable and practical route to gene transformation of R. pseudoacacia ’Idaho’ mediated with A. tumefaciens.