论文部分内容阅读
应用2017—2018年5—9月福建省观测资料对华南区域中尺度模式(GTRAMS-3 km-RUC)预报进行站点检验,建立和训练基于卷积神经网络的逐时降水分级订正模型,并与频率匹配法进行2017—2018年测试集的对比试验和2019年数据集的模拟业务检验,探讨了试验过程中遇到的样本不均衡、特征变量选取以及模型过拟合问题。结果表明:模式对于15 mm·h-1以上降水的预报能力弱,各订正方法对原始预报均有不同程度的改进作用。从评估指标来看,基于卷积神经网络的订正方法比频率匹配法表现出优势,其中相关系