论文部分内容阅读
We experimentally investigate the optical cavity for various coupled regimes with an injected squeezed vacuum state. We measure the quantum fluctuation spectra of the reflected field of an optical cavity using the homodyne detection and present the spectral dependence on the absorption and dispersion properties of the cavity in the under-coupled, critically-coupled, and over-coupled regimes. The spectra lineshape is phase sensitive with the phase shift induced by the cavity. Moreover, we find that the over-coupled optical cavity has obvious advantage in the manipulation of quantum fluctuation.
We experimentally investigate the optical cavity for various coupled regimes with an injected squeezed vacuum state. We measure the quantum fluctuation spectra of the reflected field of an optical cavity using the homodyne detection and present the spectral dependence on the absorption and dispersion properties of the cavity in the under-coupled, critically-coupled, and over-coupled regimes. The spectra lineshape is phase sensitive with the phase shift induced by the cavity. Moreover, we find that the over-coupled optical cavity has obvious advantage in the manipulation of quantum fluctuation .