论文部分内容阅读
随着社交网络、电子商务、移动互联网等技术的发展,各种网络数据迅速膨胀.互联网上蕴含着大量带有情绪色彩的文本数据,对其充分挖掘可以更好地理解网民的观点和立场.首先介绍了情绪分析的相关背景知识,包括不同情绪分类体系和文本情绪分析在舆情管控、商业决策、观点搜索、信息预测、情绪管理等场景的应用;然后从情绪分类的角度整理归纳了文本情绪分析的主流方法,并对其进行了细致的介绍和分析对比;最后,阐述了文本情绪分析存在的数据稀缺性、类别不平衡、领域依赖性、语言不平衡等问题,并结合大数据处理、多媒体融合、深度学习发展、特定主题挖掘和多语言协同等研究热点对文本情绪分析的前沿进展进行了概括和展望.