论文部分内容阅读
在机械设备的故障诊断中,常采用BP网络算法对故障进行诊断计算,但由于BP网络易于收敛于局部极小点,且在初始参数与网络结构选取不当时,网络将出现发散现象.为此提出了将神经网络优化算法应用于汽轮发电机组的故障诊断中,实现了神经网络权值和阈值的快速计算,并以汽轮发电机组的故障诊断为背景,将两种算法的结果进行比较,证明该方法比BP算法精度高且收敛速度快、可靠性好.