论文部分内容阅读
针对磨粒特征参数多、非线性突出的问题,提出一种基于非线性流形学习的磨粒特征提取方法。该方法将磨粒特征重构到高维相空间中,利用局部线性嵌入算法提取出隐藏其中的低维流形,并根据数据流形的弯曲性和邻域参数的关系,实现高维相空间中局部邻域参数的自适应选取。实验结果表明,该方法有效地克服了主成分分析和核主成分分析方法的不足,提取的磨粒特征敏感性更好,从而提高了磨粒识别的精度。