论文部分内容阅读
Homander向量场上弱凸函数的单调性质对研究完全非线性次椭圆方程的正则性起关键作用.针对一类特殊的Homander向量场——非迷向Heisenberg群H2(a,b),通过构造辅助函数,利用基于群结构的散度定理建立了H2(a,b)上弱H-凸函数的比较原理,得到了与之相应的非线性次椭圆算子的单调性质.研究结果有望为进一步讨论高维Heisenberg群上弱凸函数的性质和高阶非线性次椭圆方程的正则性提供理论基础.