论文部分内容阅读
智能机器人中人机交互的性能至关重要,人脸分析可以使人机交互变得更友善.文中提出可以同时进行笑容识别和性别分类的多任务学习卷积神经网络,同时学习存在内在相关性的任务,提升单个任务的性能.在Celeb A数据集的测试集上,文中网络在笑容识别任务和性别分类任务中均获取较高准确率.在设计的机器仿生眼上验证文中模型,获得良好的笑容识别效果和性别分类效果.文中对人脸分析进行的研究可以提升与机器仿生眼人机交互的能力.