Recognition of motor imagery tasks for BCI using CSP and chaotic PSO twin SVM

来源 :The Journal of China Universities of Posts and Telecommunica | 被引量 : 0次 | 上传用户:fenghuah
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Accurate modeling and recognition of the brain activity patterns for reliable communication and interaction are still a challenging task for the motor imagery(MI) brain-computer interface(BCI) system. In this paper, we propose a common spatial pattern(CSP) and chaotic particle swarm optimization(CPSO) twin support vector machine(TWSVM) scheme for classification of MI electroencephalography(EEG). The self-adaptive artifact removal and CSP were used to obtain the most distinguishable features. To improve the recognition results, CPSO was employed to tune the hyper-parameters of the TWSVM classifier. The usefulness of the proposed method was evaluated using the BCI competition IV-IIa dataset. The experimental results showed that the mean recognition accuracy of our proposed method was increased by 5.35%, 4.33%, 0.78%, 1.45%, and 9.26% compared with the CPSO support vector machine(SVM), particle swarm optimization(PSO) TWSVM, linear discriminant analysis(LDA), back propagation(BP) and probabilistic neural network(PNN), respectively. Furthermore, it achieved a faster or comparable central processing unit(CPU) running time over the traditional SVM methods. In this paper, we propose a common spatial pattern (CSP) and chaotic The self-adaptive artifact removal and CSP were used to obtain the most distinguishable features. To improve the recognition results, CPSO was employed to (CPSO) was used to obtain the most distinguishable features The usefulness of the proposed method was evaluated using the BCI competition IV-IIa dataset. The experimental results showed that the mean recognition accuracy of our proposed method was increased by 5.35%, 4.33%, 0.78 %, 1.45%, and 9.26% compared to the CPSO support vector machine (SVM), particle swarm optimization (PSO) TWSVM, linear discriminant analysis (LDA), back propagation abilistic neural network (PNN), respectively. respectively, it achieves a faster or comparable central processing unit (CPU) running time over the traditional SVM methods.
其他文献
当代重要作家之一约翰·麦克斯韦尔·库切的处女作《幽暗之地》,以独特的视角、精致的结构、隽永的对话、深邃的思辨而具直指人心的魅力。作者充分利用其善于移情的艺术才能,在
一般PCI和PCI-X计算机槽有4个可用电源电压:+12V,+5V,+3.3V和-12V.PCI和PCI-X板卡依靠大多数电源的+5V和+3.3V,而+12V电源限制负载电流为500mA.此标准是过去大多数数字IC工作
玛丽莲·罗宾逊是美国二十世纪最著名的女作家之一。《家》(2008)是她继小说《管家》(1981)和《基列》(2004)之后的又一新作。该小说以平淡的语调讲述了一个令人心碎的浪子回
图1所示的电路,利用脉冲频率调制(PFM)结构从-5V电源产生+3.3V输出,不需要任何外部变压器.当有一个稳定的-5V电源,并且不要求隔离时,这是一个非常实用的电路.
This paper is concerned with the synchronization of delayed neural networks via sampled-data control. A new technique, namely, the free-matrix-based time-depend
在历史上,系统设计人员和OEM供货商依靠专用集成电路(ASIC)实现高性能、低功耗、低成本组件,这类组件使终端产品与其竞争产品有明显的区别.
情态助动词是中英政治演讲语篇表达情态的重要手段,其包含着演讲者的种种态度、观点和判断。由于政治演讲语篇主要目的在于得到听众支持,演讲者非常重视和听众的交流互动以便成
习语是语言的精髓,是词汇的重要组成部分。习语来源于社会与文化并且生动地反映了所处的社会与文化。如果一个二语使用者的言语中缺乏习语表达,那他的二语听起来就很不自然。关
艾丽丝·默多克,全名吉恩·艾丽丝·默多克,是二战后英国文学领域主要的小说家之一,同时也是一位在世界上最具影响力的作家之一。她一生著有二十七部小说,这其中还包括一些大
玛格丽特·劳伦斯是加拿大当代最负盛名的作家之一,被誉为“加拿大文学之母”,曾两度摘得加拿大总督奖。她的“马纳瓦卡”系列小说充分体现了其对女性的人文关怀。此系列首部