论文部分内容阅读
针对机械设备磨损难以预测问题,提出RBF神经网络预测模型,并结合粒子群算法优化模型参数。利用变速箱型号为SGl35-2系列的K727840ZW齿轮磨损实验输入-输出数据,通过基于粒子群算法的RBF神经网络建立输出预测模型,并与传统的AR模型、BP神经网络模型及Hermite神经网络模型预测作比较。仿真结果表明,基于粒子群算法的RBF神经网络模型结构简单、预测精度高,验证了所提方法的有效性和实用性。