论文部分内容阅读
针对传统垩白大米检测主观随意性大、可重复性低、检测过程耗时费力、准确率低等问题,提出一种基于可见光谱图结合深度学习算法的垩白大米检测手段。用CCD彩色摄像机获取垩白大米和正常大米可见光谱图,对图像进行旋转、翻转以及调整对比度等随机图像变换方式提升网络训练数据集,防止深度检测模型在学习过程中出现过拟合现象。构建了7层深层次卷积神经网络模型,包括卷积层、池化层、全连接层和输入输出层,通过网络模型对采样的大米可见光谱图集进行卷积与池化操作,采用迭代学习训练方法获取大米可见光谱图在卷积层输出的特征参数,采用