论文部分内容阅读
在遗传算法优化过程中,引导搜索的主要依据是适应度函数。通过评估常见的几种适应度函数,兼顾保持种群的多样性和算法的收敛性,由乘幂尺度变换,提出了一种改进的乘幂适应度函数。以三个典型的测试函数为例,在相同遗传操作和参数情况下,分别采用常见的与改进的适应度函数进行优化比较。结果表明,所改进的乘幂适应度函数能明显提高算法的收敛精度、收敛速度和收敛稳定性,对提高遗传算法的整体性能有重要的意义。