论文部分内容阅读
全球定位系统(GPS)干扰信号类型的识别是采取有效抗干扰手段的先决条件。针对7种典型的GPS干扰信号,提取了包括高阶统计量在内的8个特征,设计了反向传播(BP)神经网络分类器和多项式支持向量机(SVM)分类器,实现了干扰信号类型识别。仿真结果表明,两种分类器均具有较高的正确识别率和较好的热噪声鲁棒性,特别是在干噪比(JNR)为3 dB时,平均正确识别率可保持在94%以上。