论文部分内容阅读
本文采用γ-Re_θ湍流转捩模型,数值模拟了两组不同叶型的涡轮叶栅表面的表面换热系数。结果证明:1)数值计算正确地预测了转捩发生位置,保证了表面换热系数模拟的可靠性;2)由于叶片型线的差异,叶片表面流动的转捩位置也不同。控制叶片表面边界层流动状态,推迟流动转捩,能够降低叶片热负荷。在相同进、出口气流条件下,选择不同的叶栅造型参数,可以调整所产生的涡轮叶型,从而增强或弱化叶片表面的换热。
In this paper, the γ-Re_θ turbulence transition model was used to numerically simulate the surface heat transfer coefficient of two cascade turbine blades with different blade types. The results show that: 1) Numerical calculation correctly predicts the location of transition and ensures the reliability of simulation of surface heat transfer coefficient; 2) Due to the difference of blade profile, the position of blade surface flow transition is also different. Controlling the flow state of the boundary layer on the blade surface and delaying the flow transition can reduce the thermal load on the blade. In the same inlet and outlet airflow conditions, choose different shape parameters of the cascade, the turbine blades can be adjusted to enhance or weaken the heat transfer on the blade surface.