论文部分内容阅读
For decades visual field defects were considered irreversible because it was thought that in the visual system the regeneration potential of the neuronal tissues is low. Nevertheless, there is always some poten-tial for partial recovery of the visual field defect that can be achieved through induction of neuroplasticity. Neuroplasticity refers to the ability of the brain to change its own functional architecture by modulating synaptic efficacy. It is maintained throughout life and just as neurological rehabilitation can improve motor coordination, visual field defects in glaucoma, diabetic retinopathy or optic neuropathy can be improved by inducing neuroplasticity. In ophthalmology many new treatment paradigms have been tested that can induce neuroplastic changes, including non-invasive alternating current stimulation. Treatment with al-ternating current stimulation (e.g., 30 minutes, daily for 10 days using transorbital electrodes and ~10 Hz) activates the entire retina and parts of the brain. Electroencephalography and functional magnetic resonance imaging studies revealed local activation of the visual cortex, global reorganization of functional brain networks, and enhanced blood flow, which together activate neurons and their networks. The future of low vision is optimistic because vision loss is indeed, partially reversible.