论文部分内容阅读
根据电力系统负荷序列的混沌特性,提出将其划分为基本混沌负荷分量和外部随机因素负荷分量,依据不同的理论分别构造预测模型.前者通过混沌动力学机理和动态递归时延神经网络融合来构造模型;后者在依据日类型和气象特征进行数据挖掘聚类的基础上利用统计分析与智能识别融合来构造模型.大量的仿真计算证明了所提出的短期负荷预测模型能有效保证全年的预测精度及其稳定性,对夏季高温区和特殊类型日的预测精度有明显提高.