论文部分内容阅读
针对带有奇异值复杂时变信号的模式分类和系统建模问题,提出了一种分式过程神经元网络.该模型是基于有理式函数具有的对复杂过程信号的逼近性质和过程神经元网络对时变信息的非线性变换机制构建的。其基本信息处理单元由两个过程神经元成对偶组成。逻辑上构成一个分式过程神经元,是人工神经网络在结构和信息处理机制上的一种扩展.分析了分式过程神经元网络的连续性和泛函数逼近能力,给出了基于函数正交基展开的学习算法.实验结果表明,分式过程神经元网络对于带有奇异值时变函数样本的学习性质和泛化性质要优于BP网络和一般过程神经元网络。网