论文部分内容阅读
摘要:大型起重机械是工业生产和工程建设中必不可少的重要设备,其运行性能对于工业生产的正常进行具有十分重要的意义。科学的评估方法可以对起重机械的工作状态和工作寿命进行预测,同时加强设备的管理水平,从而避免重大事故的发生。本文重点介绍几种应用于起重机械的安全评估模型。
关键词:起重机械;安全评估;事故分析
0.引言
起重机安全性评价的原理就是通过对起重机械的危险有害因素的区分,运用恰当的安全性评价方法,比如安全检查表,事故树分析法,风险分析法等形式,得出起重机危险程度等级,并提出合理可行的措施,指导危险源监控和事故预防,使起重机械安全状况达到可接受的安全水平。根据对安全检查中有相关内容的评价,我们可以清楚了解起重机械目前使用和管理水平,从而避免在用起重机械处于一种低水平的管理状态。
1.安全检查表
安全检查表是将一系列项目列出检查表进行分析,以确定系统、场所的状态这些项目可以包括场地、周边环境、设施、设备、操作和管理等各方面。
目前,安全检查表有3种类型:定性检查表、半定量检查表和否决型检查表。定性安全检查表是列出检查要点逐项检查,检查结果以“对”、“否”表示,检查结果不能量化;半定量检查表是给每个检查要点赋以分值,检查结果以总分表示,有了量的概念,这样,不同的检查对象也可以相互比较,但缺点是检查要点的准确赋值比较困难,而且个别十分突出的危险不能充分地表现出来;否决型检查是给一些特别重要的检查要点作出标记,这些检查要点如不满足,检查结果视为不合格,即具一票否决的作用,这样可以做到重点突出。
检查表有各种形式,不论何种形式的检查表,总体的要求是第一内容必须全面,以避免遗漏主要的潜在危险。第二要重点突出,简明扼要,否则的话,检查要点太多,容易掩盖主要危险,分散人们的注意力,反而使评价不确切。为此,重要的检查条款可作出标记,以便认真查对。
2.故障树分析法
故障树分析又称事故树分析为或事故逻辑分析,它是对系统安全性进行定性与定量分析评价的一种科学的和先进的方法,已被广泛地运用到现代设计的多个领域之中。事故树分析评价是运用由事件符号和逻辑符号组成的一种图形模式,来分析人机系统中导致灾害事故的各种因素之间的因果关系和逻辑关系,从而判明系统运行当中,各种事故发生的途径和重点环节,为有效地控制,提供一个简洁而形象的途径。在作业过程中,由于人的失误、机器故障、环境影响,随时都有可能发生不同程度的事故。为了不使这些事故导致灾害性后果就要对系统中可能发生事故的各种不安全因素进行分析和预测,以采取相应的措施和手段来防止和消除危险。因此一个系统的事故分析应包括:系统可能发生灾害事故,也称为顶上事件;系统内固有的或潜在的事故因素,包括人、机器、环境因素;各个子系统及各因素之间的相互联系与制约关系,即输入—输出的因果逻辑关系,并用专门的符号表示;计算系统的顶上事件的发生概率,进行定量分析与评价。
从系统的角度来说,故障既有因设备中具体部件(硬件)的缺陷和性能恶化所引起的,也有因软件,如自控装置中的程序错误等引起的。此外,还有因为操作人员操作不当或不经心而引起的损坏故障。显然,故障树分析法也存在一些缺点。其中主要是构造故障树的多余量相当繁重,难度也较大,对分析人员的要求也较高,因而限制了它的推广和普及。在构造故障树时要运用逻辑运算,在其未被一般分析人员充分掌握的情况下,很容易发生错误和失察。例如,很有可能把重大影响系统故障的事件漏掉;同时,由于每个分析人员所取的研究范围各有不同,其所得结论的可信性也就有所不同。
3.结构安全评估法
对于金属结构的安全评估技术的研究,美国、德国、法国和俄罗斯等国在这一领域的工作开展己久,并有多项科研成果公布,这些成果在汽车、航空等工业领域有成功的应用。
疲劳破坏是起重机金属结构失效的主要形式,而起重机金属结构作为一个承载结构系统,它的失效不仅使起重机失去功能,而且容易导致断臂等重大事故。引起起重机金属结构失效的故障主要有裂纹、局部或整体变形、折断、锈蚀、刚度不足等,其中裂纹是目前起重机械金属结构的主要故障形式,在门座起重机的转柱、门架、人字架、小拉杆、大拉杆、象鼻梁、臂架等主要构件上经常出现。裂纹主要出现在焊缝或焊缝附近的母材上,它在一定的变化载荷作用下往往会扩展,致使金属结构出现故障。
使用较频繁的、工作较繁重的建筑起重机械的金属结构、各工作机构的主要受力部件, 如吊臂上、下弦杆与斜拉杆的焊缝和热影响区,吊臂销接座及销接头与上、下弦杆的对接焊缝, 吊臂、平衡臂拉杆焊缝;标准节和顶升套架的焊缝和热影响区等部位,短则3、5年,长则10年在无损检测中都发现过有不同程度的疲劳裂纹存在。这种疲劳裂纹比较细小,大多出现在工件表面,仅凭肉眼较难发现。在裂纹形成的初期,对于设备的正常使用无任何影响,不会出现异常状况导致结构破断。但是对于使用年限较长的起重机,主要受力构件的焊缝及其热影响区长期受到交变应力的作用。疲劳裂纹会大量增加并不断扩展,当结构疲劳损伤积累到一定程度后, 遇到超载、超力矩, 大风等偶发事件,细小的疲劳裂纹就可能迅速扩展,造成主要受力构件的焊缝或热影响区撕裂,导致受力截面减小,当缺陷处承受的最大应力超过其抗拉强度时,就会引发突然断裂的事故。建筑起重机械的安全技术性能评估,就是针对使用年限较长的建筑起重机械的金属结构、各工作机构、重要零部件、电气元器件、安全保护装置等,根据国家或行业相关标准进行检验、检测与评定。
4.模糊综合评价方法
模糊综合评价方法是模糊数学中应用的比较广泛的一种方法。在对某一事务进行评价时常会遇到这样一类问题,由于评价事务是由多方面的因素所决定的,因而要对每一因素进行评价;在每一因素作出一个单独评语的基础上,如何考虑所有因素而作出一个综合评语,这就是一个综合评价问题。模糊综合评价是对受多种因素影响的事物做出全面评价的一种十分有效的多因素决策方法,其特点是评价结果不是绝对地肯定或否定,而是以一个模糊集合来表示。
起重机械的安全一直受到有关部门的密切关注,用模糊综合评价法对起重机械进行安全评价,可以大大提高起重机械的安全使用及管理水平,而且还可以提高对起重机械进行安全管理的效率,是现代化安全管理的发展趋势,同时也是安全系统工程在起重机械安全管理中的应用。模糊综合评价法在应用中其自身也可以逐渐地发展和完善,适应起重机械自身技术的发展。
5.人、机、环境系统
人、机、环境3个方面的因素是事故发生的直接原因,而管理失误是事故发生的本质原因。根据这一原理,结合设备不同危险性和往年发生事故的情况,设备的安全性用下面的公式计算:
式中, K R 为工人素质等级;K S 为机械设备等级;KH 为环境安全等级;K P 为近两年该设备事故统计;λ1为管理效能系数;λ2为机械设备种类相对安全系数; D为安全等级。
该评价方法是根据数学建模的类比原理,结合上海冶金局对安全管理的等效系数安全评价法得到的。在本方法中,把导致伤亡事故发生的人、机、环境看成是并列的3 个直接因素,取它们的几何平均值,再考虑管理方面的因素、设备种类和往年事故对结果的修正, 最终得出的评价结果。
结束语
对于大型起重机械事故,轻则造成财产损失,重则机毁人亡。因此,起重机械的安全评估工作很有价值。通过安全评估,可以及时掌握设备运行过程中存在的隐患,及时进行纠正、整改。同时,对于已经发生的重大事故,在事故责任鉴定方面,本系统也有十分重要的积极意义。
参考文献:
[1]王显政,杨富.安全评价.北京:煤炭工业出版社,2005
[2]刘峰,叶义成,黄勇.系统安全评价方法的研究现状及发展前景.中国水运,2007(1):170-181
[3]梁文娟,王凤英.浅谈安全评价的方法.装备环境工程,2004(5):16-18
关键词:起重机械;安全评估;事故分析
0.引言
起重机安全性评价的原理就是通过对起重机械的危险有害因素的区分,运用恰当的安全性评价方法,比如安全检查表,事故树分析法,风险分析法等形式,得出起重机危险程度等级,并提出合理可行的措施,指导危险源监控和事故预防,使起重机械安全状况达到可接受的安全水平。根据对安全检查中有相关内容的评价,我们可以清楚了解起重机械目前使用和管理水平,从而避免在用起重机械处于一种低水平的管理状态。
1.安全检查表
安全检查表是将一系列项目列出检查表进行分析,以确定系统、场所的状态这些项目可以包括场地、周边环境、设施、设备、操作和管理等各方面。
目前,安全检查表有3种类型:定性检查表、半定量检查表和否决型检查表。定性安全检查表是列出检查要点逐项检查,检查结果以“对”、“否”表示,检查结果不能量化;半定量检查表是给每个检查要点赋以分值,检查结果以总分表示,有了量的概念,这样,不同的检查对象也可以相互比较,但缺点是检查要点的准确赋值比较困难,而且个别十分突出的危险不能充分地表现出来;否决型检查是给一些特别重要的检查要点作出标记,这些检查要点如不满足,检查结果视为不合格,即具一票否决的作用,这样可以做到重点突出。
检查表有各种形式,不论何种形式的检查表,总体的要求是第一内容必须全面,以避免遗漏主要的潜在危险。第二要重点突出,简明扼要,否则的话,检查要点太多,容易掩盖主要危险,分散人们的注意力,反而使评价不确切。为此,重要的检查条款可作出标记,以便认真查对。
2.故障树分析法
故障树分析又称事故树分析为或事故逻辑分析,它是对系统安全性进行定性与定量分析评价的一种科学的和先进的方法,已被广泛地运用到现代设计的多个领域之中。事故树分析评价是运用由事件符号和逻辑符号组成的一种图形模式,来分析人机系统中导致灾害事故的各种因素之间的因果关系和逻辑关系,从而判明系统运行当中,各种事故发生的途径和重点环节,为有效地控制,提供一个简洁而形象的途径。在作业过程中,由于人的失误、机器故障、环境影响,随时都有可能发生不同程度的事故。为了不使这些事故导致灾害性后果就要对系统中可能发生事故的各种不安全因素进行分析和预测,以采取相应的措施和手段来防止和消除危险。因此一个系统的事故分析应包括:系统可能发生灾害事故,也称为顶上事件;系统内固有的或潜在的事故因素,包括人、机器、环境因素;各个子系统及各因素之间的相互联系与制约关系,即输入—输出的因果逻辑关系,并用专门的符号表示;计算系统的顶上事件的发生概率,进行定量分析与评价。
从系统的角度来说,故障既有因设备中具体部件(硬件)的缺陷和性能恶化所引起的,也有因软件,如自控装置中的程序错误等引起的。此外,还有因为操作人员操作不当或不经心而引起的损坏故障。显然,故障树分析法也存在一些缺点。其中主要是构造故障树的多余量相当繁重,难度也较大,对分析人员的要求也较高,因而限制了它的推广和普及。在构造故障树时要运用逻辑运算,在其未被一般分析人员充分掌握的情况下,很容易发生错误和失察。例如,很有可能把重大影响系统故障的事件漏掉;同时,由于每个分析人员所取的研究范围各有不同,其所得结论的可信性也就有所不同。
3.结构安全评估法
对于金属结构的安全评估技术的研究,美国、德国、法国和俄罗斯等国在这一领域的工作开展己久,并有多项科研成果公布,这些成果在汽车、航空等工业领域有成功的应用。
疲劳破坏是起重机金属结构失效的主要形式,而起重机金属结构作为一个承载结构系统,它的失效不仅使起重机失去功能,而且容易导致断臂等重大事故。引起起重机金属结构失效的故障主要有裂纹、局部或整体变形、折断、锈蚀、刚度不足等,其中裂纹是目前起重机械金属结构的主要故障形式,在门座起重机的转柱、门架、人字架、小拉杆、大拉杆、象鼻梁、臂架等主要构件上经常出现。裂纹主要出现在焊缝或焊缝附近的母材上,它在一定的变化载荷作用下往往会扩展,致使金属结构出现故障。
使用较频繁的、工作较繁重的建筑起重机械的金属结构、各工作机构的主要受力部件, 如吊臂上、下弦杆与斜拉杆的焊缝和热影响区,吊臂销接座及销接头与上、下弦杆的对接焊缝, 吊臂、平衡臂拉杆焊缝;标准节和顶升套架的焊缝和热影响区等部位,短则3、5年,长则10年在无损检测中都发现过有不同程度的疲劳裂纹存在。这种疲劳裂纹比较细小,大多出现在工件表面,仅凭肉眼较难发现。在裂纹形成的初期,对于设备的正常使用无任何影响,不会出现异常状况导致结构破断。但是对于使用年限较长的起重机,主要受力构件的焊缝及其热影响区长期受到交变应力的作用。疲劳裂纹会大量增加并不断扩展,当结构疲劳损伤积累到一定程度后, 遇到超载、超力矩, 大风等偶发事件,细小的疲劳裂纹就可能迅速扩展,造成主要受力构件的焊缝或热影响区撕裂,导致受力截面减小,当缺陷处承受的最大应力超过其抗拉强度时,就会引发突然断裂的事故。建筑起重机械的安全技术性能评估,就是针对使用年限较长的建筑起重机械的金属结构、各工作机构、重要零部件、电气元器件、安全保护装置等,根据国家或行业相关标准进行检验、检测与评定。
4.模糊综合评价方法
模糊综合评价方法是模糊数学中应用的比较广泛的一种方法。在对某一事务进行评价时常会遇到这样一类问题,由于评价事务是由多方面的因素所决定的,因而要对每一因素进行评价;在每一因素作出一个单独评语的基础上,如何考虑所有因素而作出一个综合评语,这就是一个综合评价问题。模糊综合评价是对受多种因素影响的事物做出全面评价的一种十分有效的多因素决策方法,其特点是评价结果不是绝对地肯定或否定,而是以一个模糊集合来表示。
起重机械的安全一直受到有关部门的密切关注,用模糊综合评价法对起重机械进行安全评价,可以大大提高起重机械的安全使用及管理水平,而且还可以提高对起重机械进行安全管理的效率,是现代化安全管理的发展趋势,同时也是安全系统工程在起重机械安全管理中的应用。模糊综合评价法在应用中其自身也可以逐渐地发展和完善,适应起重机械自身技术的发展。
5.人、机、环境系统
人、机、环境3个方面的因素是事故发生的直接原因,而管理失误是事故发生的本质原因。根据这一原理,结合设备不同危险性和往年发生事故的情况,设备的安全性用下面的公式计算:
式中, K R 为工人素质等级;K S 为机械设备等级;KH 为环境安全等级;K P 为近两年该设备事故统计;λ1为管理效能系数;λ2为机械设备种类相对安全系数; D为安全等级。
该评价方法是根据数学建模的类比原理,结合上海冶金局对安全管理的等效系数安全评价法得到的。在本方法中,把导致伤亡事故发生的人、机、环境看成是并列的3 个直接因素,取它们的几何平均值,再考虑管理方面的因素、设备种类和往年事故对结果的修正, 最终得出的评价结果。
结束语
对于大型起重机械事故,轻则造成财产损失,重则机毁人亡。因此,起重机械的安全评估工作很有价值。通过安全评估,可以及时掌握设备运行过程中存在的隐患,及时进行纠正、整改。同时,对于已经发生的重大事故,在事故责任鉴定方面,本系统也有十分重要的积极意义。
参考文献:
[1]王显政,杨富.安全评价.北京:煤炭工业出版社,2005
[2]刘峰,叶义成,黄勇.系统安全评价方法的研究现状及发展前景.中国水运,2007(1):170-181
[3]梁文娟,王凤英.浅谈安全评价的方法.装备环境工程,2004(5):16-18